Superradiant Phase Transition in Microstructures with a Complex Network Architecture

A new concept of topological organization of microstructures that maintain the ultrastrong coupling of two-level systems to a photon field and have the topology of a network (graph) with a power-law node degree distribution has been proposed. A phase transition to the superradiant state, which leads...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JETP letters 2022-06, Vol.115 (11), p.644-650
Hauptverfasser: Bazhenov, A. Yu, Nikitina, M. M., Alodjants, A. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 650
container_issue 11
container_start_page 644
container_title JETP letters
container_volume 115
creator Bazhenov, A. Yu
Nikitina, M. M.
Alodjants, A. P.
description A new concept of topological organization of microstructures that maintain the ultrastrong coupling of two-level systems to a photon field and have the topology of a network (graph) with a power-law node degree distribution has been proposed. A phase transition to the superradiant state, which leads to the formation of two dispersion branches of polaritons and is accompanied by the appearance of a nonzero macroscopic polarization of two-level systems, has been studied within the mean field theory. It has been found that the specific behavior of such a system depends on the statistical characteristics of the network structure, more precisely, on the normalized second moment of the distribution of node degrees. It has been shown that the Rabi frequency can be significantly increased in the anomalous regime of the network structure, where ζ increases significantly. The multimode (waveguide) structure of the interaction between matter and field in this regime can establish a ultrastrong coupling, which is primarily responsible for the high-temperature phase transition.
doi_str_mv 10.1134/S0021364022600756
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2703458051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2703458051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-9ef2a42c31b079a771a8592cf7fb9797ea2b66753bb5a05bb52af342b9f945cb3</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqXwA7hZ4hxYv-L4WFVAkcpDajlHjrGpS5sE21Hh35NQJA6Iy-5hvpnVDkLnBC4JYfxqAUAJyzlQmgNIkR-gEQEFWc4LeYhGg5wN-jE6iXENQEjB5AgtF11rQ9AvXtcJP610tHgZdB198k2NfY3vvQlNTKEzqQs24p1PK6zxtNm2G_uBH2zaNeENT4JZ-WS_oVN05PQm2rOfPUbPN9fL6SybP97eTSfzzNBCpUxZRzWnhpEKpNJSEl0IRY2TrlJSSatpledSsKoSGkQ_qXaM00o5xYWp2Bhd7HPb0Lx3NqZy3XSh7k-WVALjogBBeorsqeGPGKwr2-C3OnyWBMqhvPJPeb2H7j2xZ-tXG36T_zd9AYmGcUE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703458051</pqid></control><display><type>article</type><title>Superradiant Phase Transition in Microstructures with a Complex Network Architecture</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bazhenov, A. Yu ; Nikitina, M. M. ; Alodjants, A. P.</creator><creatorcontrib>Bazhenov, A. Yu ; Nikitina, M. M. ; Alodjants, A. P.</creatorcontrib><description>A new concept of topological organization of microstructures that maintain the ultrastrong coupling of two-level systems to a photon field and have the topology of a network (graph) with a power-law node degree distribution has been proposed. A phase transition to the superradiant state, which leads to the formation of two dispersion branches of polaritons and is accompanied by the appearance of a nonzero macroscopic polarization of two-level systems, has been studied within the mean field theory. It has been found that the specific behavior of such a system depends on the statistical characteristics of the network structure, more precisely, on the normalized second moment of the distribution of node degrees. It has been shown that the Rabi frequency can be significantly increased in the anomalous regime of the network structure, where ζ increases significantly. The multimode (waveguide) structure of the interaction between matter and field in this regime can establish a ultrastrong coupling, which is primarily responsible for the high-temperature phase transition.</description><identifier>ISSN: 0021-3640</identifier><identifier>EISSN: 1090-6487</identifier><identifier>DOI: 10.1134/S0021364022600756</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Atomic ; Biological and Medical Physics ; Biophysics ; Computer architecture ; Coupling ; High temperature ; Mean field theory ; Microstructure ; Molecular ; Optical and Plasma Physics ; Optics and Laser Physics ; Particle and Nuclear Physics ; Phase transitions ; Physics ; Physics and Astronomy ; Polaritons ; Quantum Information Technology ; Rabi frequency ; Solid State Physics ; Spintronics ; Topology ; Waveguides</subject><ispartof>JETP letters, 2022-06, Vol.115 (11), p.644-650</ispartof><rights>The Author(s) 2022. ISSN 0021-3640, JETP Letters, 2022, Vol. 115, No. 11, pp. 644–650. © The Author(s), 2022. This article is an open access publication, corrected publication 2022. Russian Text © The Author(s), 2022, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2022, Vol. 115, No. 11, pp. 685–691.</rights><rights>The Author(s) 2022. ISSN 0021-3640, JETP Letters, 2022, Vol. 115, No. 11, pp. 644–650. © The Author(s), 2022. This article is an open access publication, corrected publication 2022. Russian Text © The Author(s), 2022, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2022, Vol. 115, No. 11, pp. 685–691. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-9ef2a42c31b079a771a8592cf7fb9797ea2b66753bb5a05bb52af342b9f945cb3</citedby><cites>FETCH-LOGICAL-c289t-9ef2a42c31b079a771a8592cf7fb9797ea2b66753bb5a05bb52af342b9f945cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0021364022600756$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0021364022600756$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Bazhenov, A. Yu</creatorcontrib><creatorcontrib>Nikitina, M. M.</creatorcontrib><creatorcontrib>Alodjants, A. P.</creatorcontrib><title>Superradiant Phase Transition in Microstructures with a Complex Network Architecture</title><title>JETP letters</title><addtitle>Jetp Lett</addtitle><description>A new concept of topological organization of microstructures that maintain the ultrastrong coupling of two-level systems to a photon field and have the topology of a network (graph) with a power-law node degree distribution has been proposed. A phase transition to the superradiant state, which leads to the formation of two dispersion branches of polaritons and is accompanied by the appearance of a nonzero macroscopic polarization of two-level systems, has been studied within the mean field theory. It has been found that the specific behavior of such a system depends on the statistical characteristics of the network structure, more precisely, on the normalized second moment of the distribution of node degrees. It has been shown that the Rabi frequency can be significantly increased in the anomalous regime of the network structure, where ζ increases significantly. The multimode (waveguide) structure of the interaction between matter and field in this regime can establish a ultrastrong coupling, which is primarily responsible for the high-temperature phase transition.</description><subject>Atomic</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Computer architecture</subject><subject>Coupling</subject><subject>High temperature</subject><subject>Mean field theory</subject><subject>Microstructure</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Optics and Laser Physics</subject><subject>Particle and Nuclear Physics</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polaritons</subject><subject>Quantum Information Technology</subject><subject>Rabi frequency</subject><subject>Solid State Physics</subject><subject>Spintronics</subject><subject>Topology</subject><subject>Waveguides</subject><issn>0021-3640</issn><issn>1090-6487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kEtPwzAQhC0EEqXwA7hZ4hxYv-L4WFVAkcpDajlHjrGpS5sE21Hh35NQJA6Iy-5hvpnVDkLnBC4JYfxqAUAJyzlQmgNIkR-gEQEFWc4LeYhGg5wN-jE6iXENQEjB5AgtF11rQ9AvXtcJP610tHgZdB198k2NfY3vvQlNTKEzqQs24p1PK6zxtNm2G_uBH2zaNeENT4JZ-WS_oVN05PQm2rOfPUbPN9fL6SybP97eTSfzzNBCpUxZRzWnhpEKpNJSEl0IRY2TrlJSSatpledSsKoSGkQ_qXaM00o5xYWp2Bhd7HPb0Lx3NqZy3XSh7k-WVALjogBBeorsqeGPGKwr2-C3OnyWBMqhvPJPeb2H7j2xZ-tXG36T_zd9AYmGcUE</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Bazhenov, A. Yu</creator><creator>Nikitina, M. M.</creator><creator>Alodjants, A. P.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220601</creationdate><title>Superradiant Phase Transition in Microstructures with a Complex Network Architecture</title><author>Bazhenov, A. Yu ; Nikitina, M. M. ; Alodjants, A. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-9ef2a42c31b079a771a8592cf7fb9797ea2b66753bb5a05bb52af342b9f945cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Computer architecture</topic><topic>Coupling</topic><topic>High temperature</topic><topic>Mean field theory</topic><topic>Microstructure</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Optics and Laser Physics</topic><topic>Particle and Nuclear Physics</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polaritons</topic><topic>Quantum Information Technology</topic><topic>Rabi frequency</topic><topic>Solid State Physics</topic><topic>Spintronics</topic><topic>Topology</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bazhenov, A. Yu</creatorcontrib><creatorcontrib>Nikitina, M. M.</creatorcontrib><creatorcontrib>Alodjants, A. P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>JETP letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bazhenov, A. Yu</au><au>Nikitina, M. M.</au><au>Alodjants, A. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superradiant Phase Transition in Microstructures with a Complex Network Architecture</atitle><jtitle>JETP letters</jtitle><stitle>Jetp Lett</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>115</volume><issue>11</issue><spage>644</spage><epage>650</epage><pages>644-650</pages><issn>0021-3640</issn><eissn>1090-6487</eissn><abstract>A new concept of topological organization of microstructures that maintain the ultrastrong coupling of two-level systems to a photon field and have the topology of a network (graph) with a power-law node degree distribution has been proposed. A phase transition to the superradiant state, which leads to the formation of two dispersion branches of polaritons and is accompanied by the appearance of a nonzero macroscopic polarization of two-level systems, has been studied within the mean field theory. It has been found that the specific behavior of such a system depends on the statistical characteristics of the network structure, more precisely, on the normalized second moment of the distribution of node degrees. It has been shown that the Rabi frequency can be significantly increased in the anomalous regime of the network structure, where ζ increases significantly. The multimode (waveguide) structure of the interaction between matter and field in this regime can establish a ultrastrong coupling, which is primarily responsible for the high-temperature phase transition.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0021364022600756</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-3640
ispartof JETP letters, 2022-06, Vol.115 (11), p.644-650
issn 0021-3640
1090-6487
language eng
recordid cdi_proquest_journals_2703458051
source SpringerLink Journals - AutoHoldings
subjects Atomic
Biological and Medical Physics
Biophysics
Computer architecture
Coupling
High temperature
Mean field theory
Microstructure
Molecular
Optical and Plasma Physics
Optics and Laser Physics
Particle and Nuclear Physics
Phase transitions
Physics
Physics and Astronomy
Polaritons
Quantum Information Technology
Rabi frequency
Solid State Physics
Spintronics
Topology
Waveguides
title Superradiant Phase Transition in Microstructures with a Complex Network Architecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A28%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superradiant%20Phase%20Transition%20in%20Microstructures%20with%20a%20Complex%20Network%20Architecture&rft.jtitle=JETP%20letters&rft.au=Bazhenov,%20A.%20Yu&rft.date=2022-06-01&rft.volume=115&rft.issue=11&rft.spage=644&rft.epage=650&rft.pages=644-650&rft.issn=0021-3640&rft.eissn=1090-6487&rft_id=info:doi/10.1134/S0021364022600756&rft_dat=%3Cproquest_cross%3E2703458051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2703458051&rft_id=info:pmid/&rfr_iscdi=true