Fault Detection and Classification for Wide Area Backup Protection of Power Transmission Lines Using Weighted Extreme Learning Machine

The changing landscape of power grids with distributed energy sources and power electronic devices has led to increasing relay maloperations. Wide area backup protection is necessary for the resolution of faults and for a reliable power grid. This paper presents detecting and classifying faults in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.82407-82417
Hauptverfasser: Harish, Ani, Prince, A., Jayan, M. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 82417
container_issue
container_start_page 82407
container_title IEEE access
container_volume 10
creator Harish, Ani
Prince, A.
Jayan, M. V.
description The changing landscape of power grids with distributed energy sources and power electronic devices has led to increasing relay maloperations. Wide area backup protection is necessary for the resolution of faults and for a reliable power grid. This paper presents detecting and classifying faults in transmission lines for wide-area backup protection using phasor measurement units (PMU) data. The faults are detected and classified using a Weighted Extreme Learning Machine (WELM) algorithm, which considers the variable distribution of data among the different classes using a weighted approach. The PMU signal data used were generated by the simulation of an IEEE 39 bus test system in the PowerWorld/OpenPDC/MATLAB environment. For classification, the input features data were derived using a wavelet transform-based ensemble feature extraction technique, and the WELM classifier was optimized using Particle Swarm Optimization (PSO). The PSO optimized WELM (PSO-WELM) model trained on PMU data detected faults with 100% accuracy and classified them into different types with an accuracy of 99.85%. It is validated that the PSO-WELM outperforms other known classifiers on performance comparison. The model also classified noisy data with a signal-to-noise ratio (SNR) as low as 10 dB and with an accuracy of 97%.
doi_str_mv 10.1109/ACCESS.2022.3196769
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2703438538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9850985</ieee_id><doaj_id>oai_doaj_org_article_b4f5efe89eed4f33b7a70ab415355c18</doaj_id><sourcerecordid>2703438538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-eb61bf051cf557703786ac854a2597c40444877b90242317f14b1de480ee0b803</originalsourceid><addsrcrecordid>eNpNkVFLIzEUhYfFhRX1F_gS2OfWZJJMMo91rLtCZQUVH8OdzE1NbSc1mbL6B_Z3mzoqGwgJJ-c7uXCK4pTRKWO0Pps1zfz2dlrSspxyVleqqr8VhyWr6gmXvDr47_6jOElpRfPSWZLqsPh3Cbv1QC5wQDv40BPoO9KsISXvvIV3yYVIHnyHZBYRyDnYp92W3MTwiQRHbsJfjOQuQp82PrNZXfgeE7lPvl-SB_TLxwE7Mn8ZIm6QLBBiv3-5BvuYjcfFdwfrhCcf51Fxfzm_a35PFn9-XTWzxcQKqocJthVrHZXMOimVolzpCqyWAkpZq-wRQmil2pqWouRMOSZa1qHQFJG2mvKj4mrM7QKszDb6DcRXE8CbdyHEpYE4eLtG0won0aGuETvhOG8VKAqtYJJLaZnOWT_HrG0MzztMg1mFXezz-KbMowmuJd-7-OiyMaQU0X39yqjZ92fG_sy-P_PRX6ZOR8oj4hdRa0nz5m_1sZbQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703438538</pqid></control><display><type>article</type><title>Fault Detection and Classification for Wide Area Backup Protection of Power Transmission Lines Using Weighted Extreme Learning Machine</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Harish, Ani ; Prince, A. ; Jayan, M. V.</creator><creatorcontrib>Harish, Ani ; Prince, A. ; Jayan, M. V.</creatorcontrib><description>The changing landscape of power grids with distributed energy sources and power electronic devices has led to increasing relay maloperations. Wide area backup protection is necessary for the resolution of faults and for a reliable power grid. This paper presents detecting and classifying faults in transmission lines for wide-area backup protection using phasor measurement units (PMU) data. The faults are detected and classified using a Weighted Extreme Learning Machine (WELM) algorithm, which considers the variable distribution of data among the different classes using a weighted approach. The PMU signal data used were generated by the simulation of an IEEE 39 bus test system in the PowerWorld/OpenPDC/MATLAB environment. For classification, the input features data were derived using a wavelet transform-based ensemble feature extraction technique, and the WELM classifier was optimized using Particle Swarm Optimization (PSO). The PSO optimized WELM (PSO-WELM) model trained on PMU data detected faults with 100% accuracy and classified them into different types with an accuracy of 99.85%. It is validated that the PSO-WELM outperforms other known classifiers on performance comparison. The model also classified noisy data with a signal-to-noise ratio (SNR) as low as 10 dB and with an accuracy of 97%.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3196769</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Artificial neural networks ; Classification ; Classifiers ; Data ; Data models ; Distributed generation ; Electric power grids ; Electricity distribution ; Electronic devices ; extreme learning machine ; fault ; Fault detection ; fault detection and classification ; Faults ; Feature extraction ; Hidden Markov models ; Machine learning ; Measuring instruments ; Particle swarm optimization ; phasor measurement unit ; Phasor measurement units ; Phasors ; Power grids ; Power lines ; Power transmission lines ; Signal to noise ratio ; Transmission line measurements ; transmission lines ; Wavelet transforms</subject><ispartof>IEEE access, 2022, Vol.10, p.82407-82417</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-eb61bf051cf557703786ac854a2597c40444877b90242317f14b1de480ee0b803</citedby><cites>FETCH-LOGICAL-c408t-eb61bf051cf557703786ac854a2597c40444877b90242317f14b1de480ee0b803</cites><orcidid>0000-0003-0877-1232</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9850985$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Harish, Ani</creatorcontrib><creatorcontrib>Prince, A.</creatorcontrib><creatorcontrib>Jayan, M. V.</creatorcontrib><title>Fault Detection and Classification for Wide Area Backup Protection of Power Transmission Lines Using Weighted Extreme Learning Machine</title><title>IEEE access</title><addtitle>Access</addtitle><description>The changing landscape of power grids with distributed energy sources and power electronic devices has led to increasing relay maloperations. Wide area backup protection is necessary for the resolution of faults and for a reliable power grid. This paper presents detecting and classifying faults in transmission lines for wide-area backup protection using phasor measurement units (PMU) data. The faults are detected and classified using a Weighted Extreme Learning Machine (WELM) algorithm, which considers the variable distribution of data among the different classes using a weighted approach. The PMU signal data used were generated by the simulation of an IEEE 39 bus test system in the PowerWorld/OpenPDC/MATLAB environment. For classification, the input features data were derived using a wavelet transform-based ensemble feature extraction technique, and the WELM classifier was optimized using Particle Swarm Optimization (PSO). The PSO optimized WELM (PSO-WELM) model trained on PMU data detected faults with 100% accuracy and classified them into different types with an accuracy of 99.85%. It is validated that the PSO-WELM outperforms other known classifiers on performance comparison. The model also classified noisy data with a signal-to-noise ratio (SNR) as low as 10 dB and with an accuracy of 97%.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Data</subject><subject>Data models</subject><subject>Distributed generation</subject><subject>Electric power grids</subject><subject>Electricity distribution</subject><subject>Electronic devices</subject><subject>extreme learning machine</subject><subject>fault</subject><subject>Fault detection</subject><subject>fault detection and classification</subject><subject>Faults</subject><subject>Feature extraction</subject><subject>Hidden Markov models</subject><subject>Machine learning</subject><subject>Measuring instruments</subject><subject>Particle swarm optimization</subject><subject>phasor measurement unit</subject><subject>Phasor measurement units</subject><subject>Phasors</subject><subject>Power grids</subject><subject>Power lines</subject><subject>Power transmission lines</subject><subject>Signal to noise ratio</subject><subject>Transmission line measurements</subject><subject>transmission lines</subject><subject>Wavelet transforms</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVFLIzEUhYfFhRX1F_gS2OfWZJJMMo91rLtCZQUVH8OdzE1NbSc1mbL6B_Z3mzoqGwgJJ-c7uXCK4pTRKWO0Pps1zfz2dlrSspxyVleqqr8VhyWr6gmXvDr47_6jOElpRfPSWZLqsPh3Cbv1QC5wQDv40BPoO9KsISXvvIV3yYVIHnyHZBYRyDnYp92W3MTwiQRHbsJfjOQuQp82PrNZXfgeE7lPvl-SB_TLxwE7Mn8ZIm6QLBBiv3-5BvuYjcfFdwfrhCcf51Fxfzm_a35PFn9-XTWzxcQKqocJthVrHZXMOimVolzpCqyWAkpZq-wRQmil2pqWouRMOSZa1qHQFJG2mvKj4mrM7QKszDb6DcRXE8CbdyHEpYE4eLtG0won0aGuETvhOG8VKAqtYJJLaZnOWT_HrG0MzztMg1mFXezz-KbMowmuJd-7-OiyMaQU0X39yqjZ92fG_sy-P_PRX6ZOR8oj4hdRa0nz5m_1sZbQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Harish, Ani</creator><creator>Prince, A.</creator><creator>Jayan, M. V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0877-1232</orcidid></search><sort><creationdate>2022</creationdate><title>Fault Detection and Classification for Wide Area Backup Protection of Power Transmission Lines Using Weighted Extreme Learning Machine</title><author>Harish, Ani ; Prince, A. ; Jayan, M. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-eb61bf051cf557703786ac854a2597c40444877b90242317f14b1de480ee0b803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Data</topic><topic>Data models</topic><topic>Distributed generation</topic><topic>Electric power grids</topic><topic>Electricity distribution</topic><topic>Electronic devices</topic><topic>extreme learning machine</topic><topic>fault</topic><topic>Fault detection</topic><topic>fault detection and classification</topic><topic>Faults</topic><topic>Feature extraction</topic><topic>Hidden Markov models</topic><topic>Machine learning</topic><topic>Measuring instruments</topic><topic>Particle swarm optimization</topic><topic>phasor measurement unit</topic><topic>Phasor measurement units</topic><topic>Phasors</topic><topic>Power grids</topic><topic>Power lines</topic><topic>Power transmission lines</topic><topic>Signal to noise ratio</topic><topic>Transmission line measurements</topic><topic>transmission lines</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harish, Ani</creatorcontrib><creatorcontrib>Prince, A.</creatorcontrib><creatorcontrib>Jayan, M. V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harish, Ani</au><au>Prince, A.</au><au>Jayan, M. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault Detection and Classification for Wide Area Backup Protection of Power Transmission Lines Using Weighted Extreme Learning Machine</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>82407</spage><epage>82417</epage><pages>82407-82417</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The changing landscape of power grids with distributed energy sources and power electronic devices has led to increasing relay maloperations. Wide area backup protection is necessary for the resolution of faults and for a reliable power grid. This paper presents detecting and classifying faults in transmission lines for wide-area backup protection using phasor measurement units (PMU) data. The faults are detected and classified using a Weighted Extreme Learning Machine (WELM) algorithm, which considers the variable distribution of data among the different classes using a weighted approach. The PMU signal data used were generated by the simulation of an IEEE 39 bus test system in the PowerWorld/OpenPDC/MATLAB environment. For classification, the input features data were derived using a wavelet transform-based ensemble feature extraction technique, and the WELM classifier was optimized using Particle Swarm Optimization (PSO). The PSO optimized WELM (PSO-WELM) model trained on PMU data detected faults with 100% accuracy and classified them into different types with an accuracy of 99.85%. It is validated that the PSO-WELM outperforms other known classifiers on performance comparison. The model also classified noisy data with a signal-to-noise ratio (SNR) as low as 10 dB and with an accuracy of 97%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3196769</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0877-1232</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.82407-82417
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2703438538
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Algorithms
Artificial neural networks
Classification
Classifiers
Data
Data models
Distributed generation
Electric power grids
Electricity distribution
Electronic devices
extreme learning machine
fault
Fault detection
fault detection and classification
Faults
Feature extraction
Hidden Markov models
Machine learning
Measuring instruments
Particle swarm optimization
phasor measurement unit
Phasor measurement units
Phasors
Power grids
Power lines
Power transmission lines
Signal to noise ratio
Transmission line measurements
transmission lines
Wavelet transforms
title Fault Detection and Classification for Wide Area Backup Protection of Power Transmission Lines Using Weighted Extreme Learning Machine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A26%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20Detection%20and%20Classification%20for%20Wide%20Area%20Backup%20Protection%20of%20Power%20Transmission%20Lines%20Using%20Weighted%20Extreme%20Learning%20Machine&rft.jtitle=IEEE%20access&rft.au=Harish,%20Ani&rft.date=2022&rft.volume=10&rft.spage=82407&rft.epage=82417&rft.pages=82407-82417&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3196769&rft_dat=%3Cproquest_cross%3E2703438538%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2703438538&rft_id=info:pmid/&rft_ieee_id=9850985&rft_doaj_id=oai_doaj_org_article_b4f5efe89eed4f33b7a70ab415355c18&rfr_iscdi=true