Learning-Based Robust Resource Allocation for D2D Underlaying Cellular Network

In this paper, we study the resource allocation in D2D underlaying cellular network with uncertain channel state information (CSI). For satisfying the minimum rate requirement for cellular user and the reliability requirement for D2D user, we attempt to maximize the cellular user's throughput w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2022-08, Vol.21 (8), p.6731-6745
Hauptverfasser: Wu, Weihua, Liu, Runzi, Yang, Qinghai, Quek, Tony Q. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the resource allocation in D2D underlaying cellular network with uncertain channel state information (CSI). For satisfying the minimum rate requirement for cellular user and the reliability requirement for D2D user, we attempt to maximize the cellular user's throughput whilst ensuring a chance constraint for D2D. Then, a robust resource allocation framework is proposed for solving the highly intractable chance constraint, where the CSI uncertainties are represented as a deterministic set and the reliability requirement is enforced to hold for any CSI within it. Then, a symmetrical-geometry-based learning approach is developed to model the uncertain CSI into polytope, ellipsoidal and box. After that, the chance constraint under these uncertainty sets is transformed into computation convenient convex constraints. To overcome the conservatism of symmetrical-geometry-based approach, we develop a support vector clustering (SVC)-based approach to model uncertain CSI as a compact convex uncertainty set. Based on that, the chance constraint is converted into a linear convex set. Then, we develop a bisection search-based power allocation algorithm for solving the resource allocation in D2D underlaying cellular network with the obtained convex constraints. Finally, we conduct the simulation to compare the proposed robust optimization approaches with the non-robust one.
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2022.3152260