High Refractive Index Chalcogenide Hybrid Inorganic/Organic Polymers for Integrated Photonics

Optical polymer‐based integrated photonic devices are gaining interest for applications in optical packaging, biosensing, and augmented/virtual reality (AR/VR). The low refractive index of conventional organic polymers has been a barrier to realizing dense, low footprint photonic devices. The fabric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2022-08, Vol.10 (16), p.n/a
Hauptverfasser: Nishant, Abhinav, Kim, Kyung‐Jo, Showghi, Sasaan A., Himmelhuber, Roland, Kleine, Tristan S., Lee, Taeheon, Pyun, Jeffrey, Norwood, Robert A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 16
container_start_page
container_title Advanced optical materials
container_volume 10
creator Nishant, Abhinav
Kim, Kyung‐Jo
Showghi, Sasaan A.
Himmelhuber, Roland
Kleine, Tristan S.
Lee, Taeheon
Pyun, Jeffrey
Norwood, Robert A.
description Optical polymer‐based integrated photonic devices are gaining interest for applications in optical packaging, biosensing, and augmented/virtual reality (AR/VR). The low refractive index of conventional organic polymers has been a barrier to realizing dense, low footprint photonic devices. The fabrication and characterization of integrated photonic devices using a new class of high refractive index polymers, chalcogenide hybrid inorganic/organic polymers (CHIPs), which possess high refractive indices and lower optical losses compared to traditional hydrocarbon‐based polymers, are reported. These optical polymers are derived from elemental sulfur via the inverse vulcanization process, which allows for inexpensive monomers to be used for these materials. A facile fabrication strategy using CHIPs via lithography is described for single‐mode optical waveguides, Y junction splitters, multimode interferometers (MMIs), and high Q factor ring resonators, along with device characterization. Furthermore, propagation losses of 0.4 dB cm−1 near 1550 nm wavelength, which is the lowest measured loss in non‐fluorinated optical polymer waveguides, coupled with the benefits of low cost materials and manufacturing are reported. Ring resonators with Q factor on the order of 6 × 104 and cavity finesse of 45, which are some of the highest values reported for optical polymer‐based ring resonators, are also reported. The fabrication of photonic devices from high refractive index polymers remains an important emerging area for the creation of next‐generation low cost devices. The authors report on the first fabrication of polymer waveguides, Y junction splitters, and ring resonators using a new class of high refractive index polymers, chalcogenide hybrid inorganic/organic polymers.
doi_str_mv 10.1002/adom.202200176
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2703265101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2703265101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3836-6976e1801fe1a587bd09561d3e6dc613a62ea5b5c8bb8455da0eceeee6a0e12b3</originalsourceid><addsrcrecordid>eNqFkN1LwzAUxYMoOOZefS743C1Jl7R9HPNjg8mG6KOENLntMrpmJp3a_96MivrmfTkXzu_cCweha4LHBGM6kdruxxRTijFJ-RkaUJKzmOCUnP_ZL9HI-x0ODE6TfJoO0OvCVNvoCUonVWveIVo2Gj6j-VbWylbQGA3Roiuc0cGxrpKNUZN1r9HG1t0enI9K64LdQuVkCzrabG1rA-Cv0EUpaw-jbx2il_u75_kiXq0flvPZKlZJlvCY5ykHkmFSApEsSwuNc8aJToBrxUkiOQXJCqayosimjGmJQUEYHhZCi2SIbvq7B2ffjuBbsbNH14SXgqY4oZwRTAI17inlrPcOSnFwZi9dJwgWpxbFqUXx02II5H3gw9TQ_UOL2e368Tf7BYgPdsU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703265101</pqid></control><display><type>article</type><title>High Refractive Index Chalcogenide Hybrid Inorganic/Organic Polymers for Integrated Photonics</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nishant, Abhinav ; Kim, Kyung‐Jo ; Showghi, Sasaan A. ; Himmelhuber, Roland ; Kleine, Tristan S. ; Lee, Taeheon ; Pyun, Jeffrey ; Norwood, Robert A.</creator><creatorcontrib>Nishant, Abhinav ; Kim, Kyung‐Jo ; Showghi, Sasaan A. ; Himmelhuber, Roland ; Kleine, Tristan S. ; Lee, Taeheon ; Pyun, Jeffrey ; Norwood, Robert A.</creatorcontrib><description>Optical polymer‐based integrated photonic devices are gaining interest for applications in optical packaging, biosensing, and augmented/virtual reality (AR/VR). The low refractive index of conventional organic polymers has been a barrier to realizing dense, low footprint photonic devices. The fabrication and characterization of integrated photonic devices using a new class of high refractive index polymers, chalcogenide hybrid inorganic/organic polymers (CHIPs), which possess high refractive indices and lower optical losses compared to traditional hydrocarbon‐based polymers, are reported. These optical polymers are derived from elemental sulfur via the inverse vulcanization process, which allows for inexpensive monomers to be used for these materials. A facile fabrication strategy using CHIPs via lithography is described for single‐mode optical waveguides, Y junction splitters, multimode interferometers (MMIs), and high Q factor ring resonators, along with device characterization. Furthermore, propagation losses of 0.4 dB cm−1 near 1550 nm wavelength, which is the lowest measured loss in non‐fluorinated optical polymer waveguides, coupled with the benefits of low cost materials and manufacturing are reported. Ring resonators with Q factor on the order of 6 × 104 and cavity finesse of 45, which are some of the highest values reported for optical polymer‐based ring resonators, are also reported. The fabrication of photonic devices from high refractive index polymers remains an important emerging area for the creation of next‐generation low cost devices. The authors report on the first fabrication of polymer waveguides, Y junction splitters, and ring resonators using a new class of high refractive index polymers, chalcogenide hybrid inorganic/organic polymers.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202200176</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Augmented reality ; Chalcogenides ; Chip formation ; high refractive index ; integrated photonics ; Materials science ; Optical waveguides ; Optics ; Photonics ; Polymers ; Q factors ; Refractivity ; Resonators ; ring resonators ; Virtual reality ; Vulcanization ; Wave propagation ; waveguides ; Y junctions</subject><ispartof>Advanced optical materials, 2022-08, Vol.10 (16), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3836-6976e1801fe1a587bd09561d3e6dc613a62ea5b5c8bb8455da0eceeee6a0e12b3</citedby><cites>FETCH-LOGICAL-c3836-6976e1801fe1a587bd09561d3e6dc613a62ea5b5c8bb8455da0eceeee6a0e12b3</cites><orcidid>0000-0002-1288-8989</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202200176$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202200176$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Nishant, Abhinav</creatorcontrib><creatorcontrib>Kim, Kyung‐Jo</creatorcontrib><creatorcontrib>Showghi, Sasaan A.</creatorcontrib><creatorcontrib>Himmelhuber, Roland</creatorcontrib><creatorcontrib>Kleine, Tristan S.</creatorcontrib><creatorcontrib>Lee, Taeheon</creatorcontrib><creatorcontrib>Pyun, Jeffrey</creatorcontrib><creatorcontrib>Norwood, Robert A.</creatorcontrib><title>High Refractive Index Chalcogenide Hybrid Inorganic/Organic Polymers for Integrated Photonics</title><title>Advanced optical materials</title><description>Optical polymer‐based integrated photonic devices are gaining interest for applications in optical packaging, biosensing, and augmented/virtual reality (AR/VR). The low refractive index of conventional organic polymers has been a barrier to realizing dense, low footprint photonic devices. The fabrication and characterization of integrated photonic devices using a new class of high refractive index polymers, chalcogenide hybrid inorganic/organic polymers (CHIPs), which possess high refractive indices and lower optical losses compared to traditional hydrocarbon‐based polymers, are reported. These optical polymers are derived from elemental sulfur via the inverse vulcanization process, which allows for inexpensive monomers to be used for these materials. A facile fabrication strategy using CHIPs via lithography is described for single‐mode optical waveguides, Y junction splitters, multimode interferometers (MMIs), and high Q factor ring resonators, along with device characterization. Furthermore, propagation losses of 0.4 dB cm−1 near 1550 nm wavelength, which is the lowest measured loss in non‐fluorinated optical polymer waveguides, coupled with the benefits of low cost materials and manufacturing are reported. Ring resonators with Q factor on the order of 6 × 104 and cavity finesse of 45, which are some of the highest values reported for optical polymer‐based ring resonators, are also reported. The fabrication of photonic devices from high refractive index polymers remains an important emerging area for the creation of next‐generation low cost devices. The authors report on the first fabrication of polymer waveguides, Y junction splitters, and ring resonators using a new class of high refractive index polymers, chalcogenide hybrid inorganic/organic polymers.</description><subject>Augmented reality</subject><subject>Chalcogenides</subject><subject>Chip formation</subject><subject>high refractive index</subject><subject>integrated photonics</subject><subject>Materials science</subject><subject>Optical waveguides</subject><subject>Optics</subject><subject>Photonics</subject><subject>Polymers</subject><subject>Q factors</subject><subject>Refractivity</subject><subject>Resonators</subject><subject>ring resonators</subject><subject>Virtual reality</subject><subject>Vulcanization</subject><subject>Wave propagation</subject><subject>waveguides</subject><subject>Y junctions</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkN1LwzAUxYMoOOZefS743C1Jl7R9HPNjg8mG6KOENLntMrpmJp3a_96MivrmfTkXzu_cCweha4LHBGM6kdruxxRTijFJ-RkaUJKzmOCUnP_ZL9HI-x0ODE6TfJoO0OvCVNvoCUonVWveIVo2Gj6j-VbWylbQGA3Roiuc0cGxrpKNUZN1r9HG1t0enI9K64LdQuVkCzrabG1rA-Cv0EUpaw-jbx2il_u75_kiXq0flvPZKlZJlvCY5ykHkmFSApEsSwuNc8aJToBrxUkiOQXJCqayosimjGmJQUEYHhZCi2SIbvq7B2ffjuBbsbNH14SXgqY4oZwRTAI17inlrPcOSnFwZi9dJwgWpxbFqUXx02II5H3gw9TQ_UOL2e368Tf7BYgPdsU</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Nishant, Abhinav</creator><creator>Kim, Kyung‐Jo</creator><creator>Showghi, Sasaan A.</creator><creator>Himmelhuber, Roland</creator><creator>Kleine, Tristan S.</creator><creator>Lee, Taeheon</creator><creator>Pyun, Jeffrey</creator><creator>Norwood, Robert A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1288-8989</orcidid></search><sort><creationdate>20220801</creationdate><title>High Refractive Index Chalcogenide Hybrid Inorganic/Organic Polymers for Integrated Photonics</title><author>Nishant, Abhinav ; Kim, Kyung‐Jo ; Showghi, Sasaan A. ; Himmelhuber, Roland ; Kleine, Tristan S. ; Lee, Taeheon ; Pyun, Jeffrey ; Norwood, Robert A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3836-6976e1801fe1a587bd09561d3e6dc613a62ea5b5c8bb8455da0eceeee6a0e12b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Augmented reality</topic><topic>Chalcogenides</topic><topic>Chip formation</topic><topic>high refractive index</topic><topic>integrated photonics</topic><topic>Materials science</topic><topic>Optical waveguides</topic><topic>Optics</topic><topic>Photonics</topic><topic>Polymers</topic><topic>Q factors</topic><topic>Refractivity</topic><topic>Resonators</topic><topic>ring resonators</topic><topic>Virtual reality</topic><topic>Vulcanization</topic><topic>Wave propagation</topic><topic>waveguides</topic><topic>Y junctions</topic><toplevel>online_resources</toplevel><creatorcontrib>Nishant, Abhinav</creatorcontrib><creatorcontrib>Kim, Kyung‐Jo</creatorcontrib><creatorcontrib>Showghi, Sasaan A.</creatorcontrib><creatorcontrib>Himmelhuber, Roland</creatorcontrib><creatorcontrib>Kleine, Tristan S.</creatorcontrib><creatorcontrib>Lee, Taeheon</creatorcontrib><creatorcontrib>Pyun, Jeffrey</creatorcontrib><creatorcontrib>Norwood, Robert A.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishant, Abhinav</au><au>Kim, Kyung‐Jo</au><au>Showghi, Sasaan A.</au><au>Himmelhuber, Roland</au><au>Kleine, Tristan S.</au><au>Lee, Taeheon</au><au>Pyun, Jeffrey</au><au>Norwood, Robert A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Refractive Index Chalcogenide Hybrid Inorganic/Organic Polymers for Integrated Photonics</atitle><jtitle>Advanced optical materials</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>10</volume><issue>16</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Optical polymer‐based integrated photonic devices are gaining interest for applications in optical packaging, biosensing, and augmented/virtual reality (AR/VR). The low refractive index of conventional organic polymers has been a barrier to realizing dense, low footprint photonic devices. The fabrication and characterization of integrated photonic devices using a new class of high refractive index polymers, chalcogenide hybrid inorganic/organic polymers (CHIPs), which possess high refractive indices and lower optical losses compared to traditional hydrocarbon‐based polymers, are reported. These optical polymers are derived from elemental sulfur via the inverse vulcanization process, which allows for inexpensive monomers to be used for these materials. A facile fabrication strategy using CHIPs via lithography is described for single‐mode optical waveguides, Y junction splitters, multimode interferometers (MMIs), and high Q factor ring resonators, along with device characterization. Furthermore, propagation losses of 0.4 dB cm−1 near 1550 nm wavelength, which is the lowest measured loss in non‐fluorinated optical polymer waveguides, coupled with the benefits of low cost materials and manufacturing are reported. Ring resonators with Q factor on the order of 6 × 104 and cavity finesse of 45, which are some of the highest values reported for optical polymer‐based ring resonators, are also reported. The fabrication of photonic devices from high refractive index polymers remains an important emerging area for the creation of next‐generation low cost devices. The authors report on the first fabrication of polymer waveguides, Y junction splitters, and ring resonators using a new class of high refractive index polymers, chalcogenide hybrid inorganic/organic polymers.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202200176</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1288-8989</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2022-08, Vol.10 (16), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2703265101
source Wiley Online Library Journals Frontfile Complete
subjects Augmented reality
Chalcogenides
Chip formation
high refractive index
integrated photonics
Materials science
Optical waveguides
Optics
Photonics
Polymers
Q factors
Refractivity
Resonators
ring resonators
Virtual reality
Vulcanization
Wave propagation
waveguides
Y junctions
title High Refractive Index Chalcogenide Hybrid Inorganic/Organic Polymers for Integrated Photonics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A16%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Refractive%20Index%20Chalcogenide%20Hybrid%20Inorganic/Organic%20Polymers%20for%20Integrated%20Photonics&rft.jtitle=Advanced%20optical%20materials&rft.au=Nishant,%20Abhinav&rft.date=2022-08-01&rft.volume=10&rft.issue=16&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202200176&rft_dat=%3Cproquest_cross%3E2703265101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2703265101&rft_id=info:pmid/&rfr_iscdi=true