Unsupervised Domain Adaptation for Segmentation with Black-box Source Model

Unsupervised domain adaptation (UDA) has been widely used to transfer knowledge from a labeled source domain to an unlabeled target domain to counter the difficulty of labeling in a new domain. The training of conventional solutions usually relies on the existence of both source and target domain da...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-08
Hauptverfasser: Liu, Xiaofeng, Yoo, Chaehwa, Xing, Fangxu, C -C Jay Kuo, Georges El Fakhri, Woo, Jonghye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Liu, Xiaofeng
Yoo, Chaehwa
Xing, Fangxu
C -C Jay Kuo
Georges El Fakhri
Woo, Jonghye
description Unsupervised domain adaptation (UDA) has been widely used to transfer knowledge from a labeled source domain to an unlabeled target domain to counter the difficulty of labeling in a new domain. The training of conventional solutions usually relies on the existence of both source and target domain data. However, privacy of the large-scale and well-labeled data in the source domain and trained model parameters can become the major concern of cross center/domain collaborations. In this work, to address this, we propose a practical solution to UDA for segmentation with a black-box segmentation model trained in the source domain only, rather than original source data or a white-box source model. Specifically, we resort to a knowledge distillation scheme with exponential mixup decay (EMD) to gradually learn target-specific representations. In addition, unsupervised entropy minimization is further applied to regularization of the target domain confidence. We evaluated our framework on the BraTS 2018 database, achieving performance on par with white-box source model adaptation approaches.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2703182259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2703182259</sourcerecordid><originalsourceid>FETCH-proquest_journals_27031822593</originalsourceid><addsrcrecordid>eNqNit0KgjAYQEcQJOU7DLoW5rdMu-yXILqyrmXpZ810s21Wj58XPkBXB845I-IB52GQLAAmxLe2YozBMoYo4h45XZXtWjRvabGgO90Iqei6EK0TTmpFS21oivcG1SA-0j3ophb5M7jpL011Z3KkZ11gPSPjUtQW_YFTMj_sL9tj0Br96tC6rOpv1acMYsbDBCBa8f-uHydyPS4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703182259</pqid></control><display><type>article</type><title>Unsupervised Domain Adaptation for Segmentation with Black-box Source Model</title><source>Free E- Journals</source><creator>Liu, Xiaofeng ; Yoo, Chaehwa ; Xing, Fangxu ; C -C Jay Kuo ; Georges El Fakhri ; Woo, Jonghye</creator><creatorcontrib>Liu, Xiaofeng ; Yoo, Chaehwa ; Xing, Fangxu ; C -C Jay Kuo ; Georges El Fakhri ; Woo, Jonghye</creatorcontrib><description>Unsupervised domain adaptation (UDA) has been widely used to transfer knowledge from a labeled source domain to an unlabeled target domain to counter the difficulty of labeling in a new domain. The training of conventional solutions usually relies on the existence of both source and target domain data. However, privacy of the large-scale and well-labeled data in the source domain and trained model parameters can become the major concern of cross center/domain collaborations. In this work, to address this, we propose a practical solution to UDA for segmentation with a black-box segmentation model trained in the source domain only, rather than original source data or a white-box source model. Specifically, we resort to a knowledge distillation scheme with exponential mixup decay (EMD) to gradually learn target-specific representations. In addition, unsupervised entropy minimization is further applied to regularization of the target domain confidence. We evaluated our framework on the BraTS 2018 database, achieving performance on par with white-box source model adaptation approaches.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adaptation ; Distillation ; Domains ; Knowledge management ; Regularization ; Segmentation</subject><ispartof>arXiv.org, 2022-08</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Liu, Xiaofeng</creatorcontrib><creatorcontrib>Yoo, Chaehwa</creatorcontrib><creatorcontrib>Xing, Fangxu</creatorcontrib><creatorcontrib>C -C Jay Kuo</creatorcontrib><creatorcontrib>Georges El Fakhri</creatorcontrib><creatorcontrib>Woo, Jonghye</creatorcontrib><title>Unsupervised Domain Adaptation for Segmentation with Black-box Source Model</title><title>arXiv.org</title><description>Unsupervised domain adaptation (UDA) has been widely used to transfer knowledge from a labeled source domain to an unlabeled target domain to counter the difficulty of labeling in a new domain. The training of conventional solutions usually relies on the existence of both source and target domain data. However, privacy of the large-scale and well-labeled data in the source domain and trained model parameters can become the major concern of cross center/domain collaborations. In this work, to address this, we propose a practical solution to UDA for segmentation with a black-box segmentation model trained in the source domain only, rather than original source data or a white-box source model. Specifically, we resort to a knowledge distillation scheme with exponential mixup decay (EMD) to gradually learn target-specific representations. In addition, unsupervised entropy minimization is further applied to regularization of the target domain confidence. We evaluated our framework on the BraTS 2018 database, achieving performance on par with white-box source model adaptation approaches.</description><subject>Adaptation</subject><subject>Distillation</subject><subject>Domains</subject><subject>Knowledge management</subject><subject>Regularization</subject><subject>Segmentation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNit0KgjAYQEcQJOU7DLoW5rdMu-yXILqyrmXpZ810s21Wj58XPkBXB845I-IB52GQLAAmxLe2YozBMoYo4h45XZXtWjRvabGgO90Iqei6EK0TTmpFS21oivcG1SA-0j3ophb5M7jpL011Z3KkZ11gPSPjUtQW_YFTMj_sL9tj0Br96tC6rOpv1acMYsbDBCBa8f-uHydyPS4</recordid><startdate>20220816</startdate><enddate>20220816</enddate><creator>Liu, Xiaofeng</creator><creator>Yoo, Chaehwa</creator><creator>Xing, Fangxu</creator><creator>C -C Jay Kuo</creator><creator>Georges El Fakhri</creator><creator>Woo, Jonghye</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220816</creationdate><title>Unsupervised Domain Adaptation for Segmentation with Black-box Source Model</title><author>Liu, Xiaofeng ; Yoo, Chaehwa ; Xing, Fangxu ; C -C Jay Kuo ; Georges El Fakhri ; Woo, Jonghye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27031822593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation</topic><topic>Distillation</topic><topic>Domains</topic><topic>Knowledge management</topic><topic>Regularization</topic><topic>Segmentation</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiaofeng</creatorcontrib><creatorcontrib>Yoo, Chaehwa</creatorcontrib><creatorcontrib>Xing, Fangxu</creatorcontrib><creatorcontrib>C -C Jay Kuo</creatorcontrib><creatorcontrib>Georges El Fakhri</creatorcontrib><creatorcontrib>Woo, Jonghye</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiaofeng</au><au>Yoo, Chaehwa</au><au>Xing, Fangxu</au><au>C -C Jay Kuo</au><au>Georges El Fakhri</au><au>Woo, Jonghye</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Unsupervised Domain Adaptation for Segmentation with Black-box Source Model</atitle><jtitle>arXiv.org</jtitle><date>2022-08-16</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Unsupervised domain adaptation (UDA) has been widely used to transfer knowledge from a labeled source domain to an unlabeled target domain to counter the difficulty of labeling in a new domain. The training of conventional solutions usually relies on the existence of both source and target domain data. However, privacy of the large-scale and well-labeled data in the source domain and trained model parameters can become the major concern of cross center/domain collaborations. In this work, to address this, we propose a practical solution to UDA for segmentation with a black-box segmentation model trained in the source domain only, rather than original source data or a white-box source model. Specifically, we resort to a knowledge distillation scheme with exponential mixup decay (EMD) to gradually learn target-specific representations. In addition, unsupervised entropy minimization is further applied to regularization of the target domain confidence. We evaluated our framework on the BraTS 2018 database, achieving performance on par with white-box source model adaptation approaches.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2703182259
source Free E- Journals
subjects Adaptation
Distillation
Domains
Knowledge management
Regularization
Segmentation
title Unsupervised Domain Adaptation for Segmentation with Black-box Source Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A35%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Unsupervised%20Domain%20Adaptation%20for%20Segmentation%20with%20Black-box%20Source%20Model&rft.jtitle=arXiv.org&rft.au=Liu,%20Xiaofeng&rft.date=2022-08-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2703182259%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2703182259&rft_id=info:pmid/&rfr_iscdi=true