Bifocal-Binocular Visual SLAM System for Repetitive Large-Scale Environments
Visual simultaneous localization and mapping (VSLAM) is an appropriate method for positioning and navigation of intelligent unmanned systems under Global Navigation Satellite Systems (GNSS)-denied environment, but it is still facing some dilemmas in repetitive large-scale environments. In this artic...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2022, Vol.71, p.1-15 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 71 |
creator | Xu, Sixiong Dong, Yanchao Wang, Haotian Wang, Senbo Zhang, Yahe He, Bin |
description | Visual simultaneous localization and mapping (VSLAM) is an appropriate method for positioning and navigation of intelligent unmanned systems under Global Navigation Satellite Systems (GNSS)-denied environment, but it is still facing some dilemmas in repetitive large-scale environments. In this article, a VSLAM method based on bifocal-binocular vision is proposed. By introducing the binocular camera with different focal lengths, the perception ability of the system in vast space is improved as the designed cameras could complement each other at different working distances. Meanwhile, considering the inherent structure of the scene, additional optimization is proposed to reduce the accumulated error based on the markers distribution knowledge obtained from online placement inference. The algorithm proposed in this article significantly improves the stability and accuracy of the VSLAM system in repetitive large-scale scenes, and is validated in both virtual datasets and real-world environments. |
doi_str_mv | 10.1109/TIM.2022.3196700 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2703132573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9857662</ieee_id><sourcerecordid>2703132573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-c08374a4e0c696a45e89a3bd3d91fdc7ac38c6d2afddc1bc460d7643f9489cc53</originalsourceid><addsrcrecordid>eNo9kEFLwzAUgIMoOKd3wUvBc-tL0ibNcRtTBx2Cm15Dlr5KRtfOpB3s39ux4eldvu-9x0fII4WEUlAv68UyYcBYwqkSEuCKjGiWyVgJwa7JCIDmsUozcUvuQtgCgBSpHJFi6qrWmjqeuqa1fW189O1Cb-poVUyW0eoYOtxFVeujT9xj5zp3wKgw_gfj1aBhNG8OzrfNDpsu3JObytQBHy5zTL5e5-vZe1x8vC1mkyK2TNEutpBzmZoUwQolTJphrgzflLxUtCqtNJbnVpTMVGVp6camAsrhW16pNFfWZnxMns9797797TF0etv2vhlOaiaBU84yyQcKzpT1bQgeK733bmf8UVPQp2Z6aKZPzfSl2aA8nRWHiP-4yjM5VOR_V3dnvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703132573</pqid></control><display><type>article</type><title>Bifocal-Binocular Visual SLAM System for Repetitive Large-Scale Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Sixiong ; Dong, Yanchao ; Wang, Haotian ; Wang, Senbo ; Zhang, Yahe ; He, Bin</creator><creatorcontrib>Xu, Sixiong ; Dong, Yanchao ; Wang, Haotian ; Wang, Senbo ; Zhang, Yahe ; He, Bin</creatorcontrib><description>Visual simultaneous localization and mapping (VSLAM) is an appropriate method for positioning and navigation of intelligent unmanned systems under Global Navigation Satellite Systems (GNSS)-denied environment, but it is still facing some dilemmas in repetitive large-scale environments. In this article, a VSLAM method based on bifocal-binocular vision is proposed. By introducing the binocular camera with different focal lengths, the perception ability of the system in vast space is improved as the designed cameras could complement each other at different working distances. Meanwhile, considering the inherent structure of the scene, additional optimization is proposed to reduce the accumulated error based on the markers distribution knowledge obtained from online placement inference. The algorithm proposed in this article significantly improves the stability and accuracy of the VSLAM system in repetitive large-scale scenes, and is validated in both virtual datasets and real-world environments.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2022.3196700</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bifocal-binocular vision ; Binocular vision ; Cameras ; Feature extraction ; Global navigation satellite system ; Location awareness ; markers distribution knowledge ; Navigation satellites ; online placement inference ; Optimization ; repetitive large-scale environments ; Robustness ; Simultaneous localization and mapping ; visual simultaneous localization and mapping (VSLAM) ; Visualization</subject><ispartof>IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-c08374a4e0c696a45e89a3bd3d91fdc7ac38c6d2afddc1bc460d7643f9489cc53</citedby><cites>FETCH-LOGICAL-c291t-c08374a4e0c696a45e89a3bd3d91fdc7ac38c6d2afddc1bc460d7643f9489cc53</cites><orcidid>0000-0003-3193-6269 ; 0000-0001-6007-7593 ; 0000-0001-6864-8354 ; 0000-0001-8565-8159 ; 0000-0002-8389-0963 ; 0000-0002-2866-5106</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9857662$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9857662$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Sixiong</creatorcontrib><creatorcontrib>Dong, Yanchao</creatorcontrib><creatorcontrib>Wang, Haotian</creatorcontrib><creatorcontrib>Wang, Senbo</creatorcontrib><creatorcontrib>Zhang, Yahe</creatorcontrib><creatorcontrib>He, Bin</creatorcontrib><title>Bifocal-Binocular Visual SLAM System for Repetitive Large-Scale Environments</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Visual simultaneous localization and mapping (VSLAM) is an appropriate method for positioning and navigation of intelligent unmanned systems under Global Navigation Satellite Systems (GNSS)-denied environment, but it is still facing some dilemmas in repetitive large-scale environments. In this article, a VSLAM method based on bifocal-binocular vision is proposed. By introducing the binocular camera with different focal lengths, the perception ability of the system in vast space is improved as the designed cameras could complement each other at different working distances. Meanwhile, considering the inherent structure of the scene, additional optimization is proposed to reduce the accumulated error based on the markers distribution knowledge obtained from online placement inference. The algorithm proposed in this article significantly improves the stability and accuracy of the VSLAM system in repetitive large-scale scenes, and is validated in both virtual datasets and real-world environments.</description><subject>Algorithms</subject><subject>Bifocal-binocular vision</subject><subject>Binocular vision</subject><subject>Cameras</subject><subject>Feature extraction</subject><subject>Global navigation satellite system</subject><subject>Location awareness</subject><subject>markers distribution knowledge</subject><subject>Navigation satellites</subject><subject>online placement inference</subject><subject>Optimization</subject><subject>repetitive large-scale environments</subject><subject>Robustness</subject><subject>Simultaneous localization and mapping</subject><subject>visual simultaneous localization and mapping (VSLAM)</subject><subject>Visualization</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLwzAUgIMoOKd3wUvBc-tL0ibNcRtTBx2Cm15Dlr5KRtfOpB3s39ux4eldvu-9x0fII4WEUlAv68UyYcBYwqkSEuCKjGiWyVgJwa7JCIDmsUozcUvuQtgCgBSpHJFi6qrWmjqeuqa1fW189O1Cb-poVUyW0eoYOtxFVeujT9xj5zp3wKgw_gfj1aBhNG8OzrfNDpsu3JObytQBHy5zTL5e5-vZe1x8vC1mkyK2TNEutpBzmZoUwQolTJphrgzflLxUtCqtNJbnVpTMVGVp6camAsrhW16pNFfWZnxMns9797797TF0etv2vhlOaiaBU84yyQcKzpT1bQgeK733bmf8UVPQp2Z6aKZPzfSl2aA8nRWHiP-4yjM5VOR_V3dnvg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Xu, Sixiong</creator><creator>Dong, Yanchao</creator><creator>Wang, Haotian</creator><creator>Wang, Senbo</creator><creator>Zhang, Yahe</creator><creator>He, Bin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3193-6269</orcidid><orcidid>https://orcid.org/0000-0001-6007-7593</orcidid><orcidid>https://orcid.org/0000-0001-6864-8354</orcidid><orcidid>https://orcid.org/0000-0001-8565-8159</orcidid><orcidid>https://orcid.org/0000-0002-8389-0963</orcidid><orcidid>https://orcid.org/0000-0002-2866-5106</orcidid></search><sort><creationdate>2022</creationdate><title>Bifocal-Binocular Visual SLAM System for Repetitive Large-Scale Environments</title><author>Xu, Sixiong ; Dong, Yanchao ; Wang, Haotian ; Wang, Senbo ; Zhang, Yahe ; He, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-c08374a4e0c696a45e89a3bd3d91fdc7ac38c6d2afddc1bc460d7643f9489cc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Bifocal-binocular vision</topic><topic>Binocular vision</topic><topic>Cameras</topic><topic>Feature extraction</topic><topic>Global navigation satellite system</topic><topic>Location awareness</topic><topic>markers distribution knowledge</topic><topic>Navigation satellites</topic><topic>online placement inference</topic><topic>Optimization</topic><topic>repetitive large-scale environments</topic><topic>Robustness</topic><topic>Simultaneous localization and mapping</topic><topic>visual simultaneous localization and mapping (VSLAM)</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Sixiong</creatorcontrib><creatorcontrib>Dong, Yanchao</creatorcontrib><creatorcontrib>Wang, Haotian</creatorcontrib><creatorcontrib>Wang, Senbo</creatorcontrib><creatorcontrib>Zhang, Yahe</creatorcontrib><creatorcontrib>He, Bin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Sixiong</au><au>Dong, Yanchao</au><au>Wang, Haotian</au><au>Wang, Senbo</au><au>Zhang, Yahe</au><au>He, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifocal-Binocular Visual SLAM System for Repetitive Large-Scale Environments</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2022</date><risdate>2022</risdate><volume>71</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Visual simultaneous localization and mapping (VSLAM) is an appropriate method for positioning and navigation of intelligent unmanned systems under Global Navigation Satellite Systems (GNSS)-denied environment, but it is still facing some dilemmas in repetitive large-scale environments. In this article, a VSLAM method based on bifocal-binocular vision is proposed. By introducing the binocular camera with different focal lengths, the perception ability of the system in vast space is improved as the designed cameras could complement each other at different working distances. Meanwhile, considering the inherent structure of the scene, additional optimization is proposed to reduce the accumulated error based on the markers distribution knowledge obtained from online placement inference. The algorithm proposed in this article significantly improves the stability and accuracy of the VSLAM system in repetitive large-scale scenes, and is validated in both virtual datasets and real-world environments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2022.3196700</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3193-6269</orcidid><orcidid>https://orcid.org/0000-0001-6007-7593</orcidid><orcidid>https://orcid.org/0000-0001-6864-8354</orcidid><orcidid>https://orcid.org/0000-0001-8565-8159</orcidid><orcidid>https://orcid.org/0000-0002-8389-0963</orcidid><orcidid>https://orcid.org/0000-0002-2866-5106</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-15 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_proquest_journals_2703132573 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Bifocal-binocular vision Binocular vision Cameras Feature extraction Global navigation satellite system Location awareness markers distribution knowledge Navigation satellites online placement inference Optimization repetitive large-scale environments Robustness Simultaneous localization and mapping visual simultaneous localization and mapping (VSLAM) Visualization |
title | Bifocal-Binocular Visual SLAM System for Repetitive Large-Scale Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A12%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifocal-Binocular%20Visual%20SLAM%20System%20for%20Repetitive%20Large-Scale%20Environments&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Xu,%20Sixiong&rft.date=2022&rft.volume=71&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2022.3196700&rft_dat=%3Cproquest_RIE%3E2703132573%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2703132573&rft_id=info:pmid/&rft_ieee_id=9857662&rfr_iscdi=true |