Bifocal-Binocular Visual SLAM System for Repetitive Large-Scale Environments

Visual simultaneous localization and mapping (VSLAM) is an appropriate method for positioning and navigation of intelligent unmanned systems under Global Navigation Satellite Systems (GNSS)-denied environment, but it is still facing some dilemmas in repetitive large-scale environments. In this artic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2022, Vol.71, p.1-15
Hauptverfasser: Xu, Sixiong, Dong, Yanchao, Wang, Haotian, Wang, Senbo, Zhang, Yahe, He, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 71
creator Xu, Sixiong
Dong, Yanchao
Wang, Haotian
Wang, Senbo
Zhang, Yahe
He, Bin
description Visual simultaneous localization and mapping (VSLAM) is an appropriate method for positioning and navigation of intelligent unmanned systems under Global Navigation Satellite Systems (GNSS)-denied environment, but it is still facing some dilemmas in repetitive large-scale environments. In this article, a VSLAM method based on bifocal-binocular vision is proposed. By introducing the binocular camera with different focal lengths, the perception ability of the system in vast space is improved as the designed cameras could complement each other at different working distances. Meanwhile, considering the inherent structure of the scene, additional optimization is proposed to reduce the accumulated error based on the markers distribution knowledge obtained from online placement inference. The algorithm proposed in this article significantly improves the stability and accuracy of the VSLAM system in repetitive large-scale scenes, and is validated in both virtual datasets and real-world environments.
doi_str_mv 10.1109/TIM.2022.3196700
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2703132573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9857662</ieee_id><sourcerecordid>2703132573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-c08374a4e0c696a45e89a3bd3d91fdc7ac38c6d2afddc1bc460d7643f9489cc53</originalsourceid><addsrcrecordid>eNo9kEFLwzAUgIMoOKd3wUvBc-tL0ibNcRtTBx2Cm15Dlr5KRtfOpB3s39ux4eldvu-9x0fII4WEUlAv68UyYcBYwqkSEuCKjGiWyVgJwa7JCIDmsUozcUvuQtgCgBSpHJFi6qrWmjqeuqa1fW189O1Cb-poVUyW0eoYOtxFVeujT9xj5zp3wKgw_gfj1aBhNG8OzrfNDpsu3JObytQBHy5zTL5e5-vZe1x8vC1mkyK2TNEutpBzmZoUwQolTJphrgzflLxUtCqtNJbnVpTMVGVp6camAsrhW16pNFfWZnxMns9797797TF0etv2vhlOaiaBU84yyQcKzpT1bQgeK733bmf8UVPQp2Z6aKZPzfSl2aA8nRWHiP-4yjM5VOR_V3dnvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703132573</pqid></control><display><type>article</type><title>Bifocal-Binocular Visual SLAM System for Repetitive Large-Scale Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Sixiong ; Dong, Yanchao ; Wang, Haotian ; Wang, Senbo ; Zhang, Yahe ; He, Bin</creator><creatorcontrib>Xu, Sixiong ; Dong, Yanchao ; Wang, Haotian ; Wang, Senbo ; Zhang, Yahe ; He, Bin</creatorcontrib><description>Visual simultaneous localization and mapping (VSLAM) is an appropriate method for positioning and navigation of intelligent unmanned systems under Global Navigation Satellite Systems (GNSS)-denied environment, but it is still facing some dilemmas in repetitive large-scale environments. In this article, a VSLAM method based on bifocal-binocular vision is proposed. By introducing the binocular camera with different focal lengths, the perception ability of the system in vast space is improved as the designed cameras could complement each other at different working distances. Meanwhile, considering the inherent structure of the scene, additional optimization is proposed to reduce the accumulated error based on the markers distribution knowledge obtained from online placement inference. The algorithm proposed in this article significantly improves the stability and accuracy of the VSLAM system in repetitive large-scale scenes, and is validated in both virtual datasets and real-world environments.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2022.3196700</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bifocal-binocular vision ; Binocular vision ; Cameras ; Feature extraction ; Global navigation satellite system ; Location awareness ; markers distribution knowledge ; Navigation satellites ; online placement inference ; Optimization ; repetitive large-scale environments ; Robustness ; Simultaneous localization and mapping ; visual simultaneous localization and mapping (VSLAM) ; Visualization</subject><ispartof>IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-c08374a4e0c696a45e89a3bd3d91fdc7ac38c6d2afddc1bc460d7643f9489cc53</citedby><cites>FETCH-LOGICAL-c291t-c08374a4e0c696a45e89a3bd3d91fdc7ac38c6d2afddc1bc460d7643f9489cc53</cites><orcidid>0000-0003-3193-6269 ; 0000-0001-6007-7593 ; 0000-0001-6864-8354 ; 0000-0001-8565-8159 ; 0000-0002-8389-0963 ; 0000-0002-2866-5106</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9857662$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9857662$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Sixiong</creatorcontrib><creatorcontrib>Dong, Yanchao</creatorcontrib><creatorcontrib>Wang, Haotian</creatorcontrib><creatorcontrib>Wang, Senbo</creatorcontrib><creatorcontrib>Zhang, Yahe</creatorcontrib><creatorcontrib>He, Bin</creatorcontrib><title>Bifocal-Binocular Visual SLAM System for Repetitive Large-Scale Environments</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Visual simultaneous localization and mapping (VSLAM) is an appropriate method for positioning and navigation of intelligent unmanned systems under Global Navigation Satellite Systems (GNSS)-denied environment, but it is still facing some dilemmas in repetitive large-scale environments. In this article, a VSLAM method based on bifocal-binocular vision is proposed. By introducing the binocular camera with different focal lengths, the perception ability of the system in vast space is improved as the designed cameras could complement each other at different working distances. Meanwhile, considering the inherent structure of the scene, additional optimization is proposed to reduce the accumulated error based on the markers distribution knowledge obtained from online placement inference. The algorithm proposed in this article significantly improves the stability and accuracy of the VSLAM system in repetitive large-scale scenes, and is validated in both virtual datasets and real-world environments.</description><subject>Algorithms</subject><subject>Bifocal-binocular vision</subject><subject>Binocular vision</subject><subject>Cameras</subject><subject>Feature extraction</subject><subject>Global navigation satellite system</subject><subject>Location awareness</subject><subject>markers distribution knowledge</subject><subject>Navigation satellites</subject><subject>online placement inference</subject><subject>Optimization</subject><subject>repetitive large-scale environments</subject><subject>Robustness</subject><subject>Simultaneous localization and mapping</subject><subject>visual simultaneous localization and mapping (VSLAM)</subject><subject>Visualization</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLwzAUgIMoOKd3wUvBc-tL0ibNcRtTBx2Cm15Dlr5KRtfOpB3s39ux4eldvu-9x0fII4WEUlAv68UyYcBYwqkSEuCKjGiWyVgJwa7JCIDmsUozcUvuQtgCgBSpHJFi6qrWmjqeuqa1fW189O1Cb-poVUyW0eoYOtxFVeujT9xj5zp3wKgw_gfj1aBhNG8OzrfNDpsu3JObytQBHy5zTL5e5-vZe1x8vC1mkyK2TNEutpBzmZoUwQolTJphrgzflLxUtCqtNJbnVpTMVGVp6camAsrhW16pNFfWZnxMns9797797TF0etv2vhlOaiaBU84yyQcKzpT1bQgeK733bmf8UVPQp2Z6aKZPzfSl2aA8nRWHiP-4yjM5VOR_V3dnvg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Xu, Sixiong</creator><creator>Dong, Yanchao</creator><creator>Wang, Haotian</creator><creator>Wang, Senbo</creator><creator>Zhang, Yahe</creator><creator>He, Bin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3193-6269</orcidid><orcidid>https://orcid.org/0000-0001-6007-7593</orcidid><orcidid>https://orcid.org/0000-0001-6864-8354</orcidid><orcidid>https://orcid.org/0000-0001-8565-8159</orcidid><orcidid>https://orcid.org/0000-0002-8389-0963</orcidid><orcidid>https://orcid.org/0000-0002-2866-5106</orcidid></search><sort><creationdate>2022</creationdate><title>Bifocal-Binocular Visual SLAM System for Repetitive Large-Scale Environments</title><author>Xu, Sixiong ; Dong, Yanchao ; Wang, Haotian ; Wang, Senbo ; Zhang, Yahe ; He, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-c08374a4e0c696a45e89a3bd3d91fdc7ac38c6d2afddc1bc460d7643f9489cc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Bifocal-binocular vision</topic><topic>Binocular vision</topic><topic>Cameras</topic><topic>Feature extraction</topic><topic>Global navigation satellite system</topic><topic>Location awareness</topic><topic>markers distribution knowledge</topic><topic>Navigation satellites</topic><topic>online placement inference</topic><topic>Optimization</topic><topic>repetitive large-scale environments</topic><topic>Robustness</topic><topic>Simultaneous localization and mapping</topic><topic>visual simultaneous localization and mapping (VSLAM)</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Sixiong</creatorcontrib><creatorcontrib>Dong, Yanchao</creatorcontrib><creatorcontrib>Wang, Haotian</creatorcontrib><creatorcontrib>Wang, Senbo</creatorcontrib><creatorcontrib>Zhang, Yahe</creatorcontrib><creatorcontrib>He, Bin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Sixiong</au><au>Dong, Yanchao</au><au>Wang, Haotian</au><au>Wang, Senbo</au><au>Zhang, Yahe</au><au>He, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifocal-Binocular Visual SLAM System for Repetitive Large-Scale Environments</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2022</date><risdate>2022</risdate><volume>71</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Visual simultaneous localization and mapping (VSLAM) is an appropriate method for positioning and navigation of intelligent unmanned systems under Global Navigation Satellite Systems (GNSS)-denied environment, but it is still facing some dilemmas in repetitive large-scale environments. In this article, a VSLAM method based on bifocal-binocular vision is proposed. By introducing the binocular camera with different focal lengths, the perception ability of the system in vast space is improved as the designed cameras could complement each other at different working distances. Meanwhile, considering the inherent structure of the scene, additional optimization is proposed to reduce the accumulated error based on the markers distribution knowledge obtained from online placement inference. The algorithm proposed in this article significantly improves the stability and accuracy of the VSLAM system in repetitive large-scale scenes, and is validated in both virtual datasets and real-world environments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2022.3196700</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3193-6269</orcidid><orcidid>https://orcid.org/0000-0001-6007-7593</orcidid><orcidid>https://orcid.org/0000-0001-6864-8354</orcidid><orcidid>https://orcid.org/0000-0001-8565-8159</orcidid><orcidid>https://orcid.org/0000-0002-8389-0963</orcidid><orcidid>https://orcid.org/0000-0002-2866-5106</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-15
issn 0018-9456
1557-9662
language eng
recordid cdi_proquest_journals_2703132573
source IEEE Electronic Library (IEL)
subjects Algorithms
Bifocal-binocular vision
Binocular vision
Cameras
Feature extraction
Global navigation satellite system
Location awareness
markers distribution knowledge
Navigation satellites
online placement inference
Optimization
repetitive large-scale environments
Robustness
Simultaneous localization and mapping
visual simultaneous localization and mapping (VSLAM)
Visualization
title Bifocal-Binocular Visual SLAM System for Repetitive Large-Scale Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A12%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifocal-Binocular%20Visual%20SLAM%20System%20for%20Repetitive%20Large-Scale%20Environments&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Xu,%20Sixiong&rft.date=2022&rft.volume=71&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2022.3196700&rft_dat=%3Cproquest_RIE%3E2703132573%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2703132573&rft_id=info:pmid/&rft_ieee_id=9857662&rfr_iscdi=true