Real-Time Shielded and Unshielded Moving SNM Detection Using Large-Array Tensioned Metastable Fluid Detectors
This article discusses the design and performance of a single array of centrifugally tensioned metastable fluid detectors (CTMFDs) for real-time detection of shielded and unshielded neutron-emitting special nuclear materials (SNMs), both while moving and stationary, and at variable standoff distance...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2022-08, Vol.69 (8), p.1945-1952 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1952 |
---|---|
container_issue | 8 |
container_start_page | 1945 |
container_title | IEEE transactions on nuclear science |
container_volume | 69 |
creator | Ozerov, S. Boyle, N. Houghtalen, N. Taleyarkhan, R. P. |
description | This article discusses the design and performance of a single array of centrifugally tensioned metastable fluid detectors (CTMFDs) for real-time detection of shielded and unshielded neutron-emitting special nuclear materials (SNMs), both while moving and stationary, and at variable standoff distances. With the goal to maximize the detection rate of 0.02 eV to 12+ MeV energy range neutrons, the sensor fluid in each CTMFD unit was formulated to include natural boron. At a tensioned negative pressure ( P_{\mathrm {neg}} ) state of −7 bar, the 16 cc CTMFD intrinsic detection efficiency was measured for both shielded (in 12^{\prime \prime } OD paraffin) and unshielded configurations as ~35% against a Pu-Be ( \alpha , n ) neutron source emitting 2\times 10^{6} n/s. An array of 13 CTMFDs stacked in a rectangular enclosure demonstrated conclusive real-time tracking of the Pu-Be source in the trunk of a car shielded in a 0.3-m ( 12^{\prime \prime } ) OD paraffin bucket, or unshielded at variable standoffs, and while speeding at 20 mph (~32 kph). The measured detection counts range from ~2 to 12 times over background at closest approach standoffs ranging from 20 m (~70 ft) to 4 m (~13 ft), respectively. The experimental scenario was modeled and simulated to explain the paradoxical and nonintuitive experimental findings pertaining to shielded and unshielded SNM cases, both displaying similar detection rates. The relative effects of neutron down-scattering for shielded cases, which increased detection probability-compensating for shield-absorbed reductions, along with shadowing effects from detector panel background shielding, were found to be dominant contributors. |
doi_str_mv | 10.1109/TNS.2022.3184844 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2703099133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9807395</ieee_id><sourcerecordid>2703099133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-d7c8c127e6dbe42bc449304f3652621d477357b9db4e4435dc020283ebb0435b3</originalsourceid><addsrcrecordid>eNo9kN1PwjAUxRujiYi-m_iy6POwn1v7SFDUBDAReG629gIlY8N2mPDfWzL06ebc_k57ehC6J3hACFbPi9l8QDGlA0Ykl5xfoB4RQqZE5PIS9TAmMlVcqWt0E8I2Si6w6KHdFxRVunA7SOYbB5UFmxS1TZZ1-JPT5sfV62Q-myYv0IJpXVMny3DaTQq_hnTofXFMFlCHeHIyQFuEtigrSMbVwdmzrfHhFl2tiirA3Xn20XL8uhi9p5PPt4_RcJIaluE2tbmRhtAcMlsCp6XhXDHMVywTNKPE8jxnIi-VLTlwzoQ1OH5dMihLHGXJ-uixu7cJrdPBuPj-xjR1HWNooiSVkkboqYP2vvk-QGj1tjn4OubSNMcMK0UYixTuKOObEDys9N67XeGPmmB9al7H5vWpeX1uPloeOosDgH9cSZwzJdgvUyd92A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703099133</pqid></control><display><type>article</type><title>Real-Time Shielded and Unshielded Moving SNM Detection Using Large-Array Tensioned Metastable Fluid Detectors</title><source>IEEE Electronic Library (IEL)</source><creator>Ozerov, S. ; Boyle, N. ; Houghtalen, N. ; Taleyarkhan, R. P.</creator><creatorcontrib>Ozerov, S. ; Boyle, N. ; Houghtalen, N. ; Taleyarkhan, R. P. ; Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)</creatorcontrib><description><![CDATA[This article discusses the design and performance of a single array of centrifugally tensioned metastable fluid detectors (CTMFDs) for real-time detection of shielded and unshielded neutron-emitting special nuclear materials (SNMs), both while moving and stationary, and at variable standoff distances. With the goal to maximize the detection rate of 0.02 eV to 12+ MeV energy range neutrons, the sensor fluid in each CTMFD unit was formulated to include natural boron. At a tensioned negative pressure (<inline-formula> <tex-math notation="LaTeX">P_{\mathrm {neg}} </tex-math></inline-formula>) state of −7 bar, the 16 cc CTMFD intrinsic detection efficiency was measured for both shielded (in <inline-formula> <tex-math notation="LaTeX">12^{\prime \prime } </tex-math></inline-formula> OD paraffin) and unshielded configurations as ~35% against a Pu-Be (<inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>) neutron source emitting <inline-formula> <tex-math notation="LaTeX">2\times 10^{6} </tex-math></inline-formula> n/s. An array of 13 CTMFDs stacked in a rectangular enclosure demonstrated conclusive real-time tracking of the Pu-Be source in the trunk of a car shielded in a 0.3-m (<inline-formula> <tex-math notation="LaTeX">12^{\prime \prime } </tex-math></inline-formula>) OD paraffin bucket, or unshielded at variable standoffs, and while speeding at 20 mph (~32 kph). The measured detection counts range from ~2 to 12 times over background at closest approach standoffs ranging from 20 m (~70 ft) to 4 m (~13 ft), respectively. The experimental scenario was modeled and simulated to explain the paradoxical and nonintuitive experimental findings pertaining to shielded and unshielded SNM cases, both displaying similar detection rates. The relative effects of neutron down-scattering for shielded cases, which increased detection probability-compensating for shield-absorbed reductions, along with shadowing effects from detector panel background shielding, were found to be dominant contributors.]]></description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2022.3184844</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arrays ; Bars ; Boron ; Centrifugally tensioned metastable fluid detector (CTMFD) ; Detectors ; Engineering ; Fluids ; Monitoring ; moving source tracking ; neutron detectors ; Neutrons ; Nuclear Science & Technology ; Paraffin ; Paraffins ; Real time ; Real-time systems ; Sensors ; Shielding ; special nuclear material (SNM) ; standoff detection</subject><ispartof>IEEE transactions on nuclear science, 2022-08, Vol.69 (8), p.1945-1952</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-d7c8c127e6dbe42bc449304f3652621d477357b9db4e4435dc020283ebb0435b3</citedby><cites>FETCH-LOGICAL-c360t-d7c8c127e6dbe42bc449304f3652621d477357b9db4e4435dc020283ebb0435b3</cites><orcidid>0000-0001-9726-4632 ; 0000-0002-6320-4268 ; 0000-0001-7103-3182 ; 0000000263204268 ; 0000000197264632 ; 0000000171033182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9807395$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9807395$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1982882$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ozerov, S.</creatorcontrib><creatorcontrib>Boyle, N.</creatorcontrib><creatorcontrib>Houghtalen, N.</creatorcontrib><creatorcontrib>Taleyarkhan, R. P.</creatorcontrib><creatorcontrib>Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)</creatorcontrib><title>Real-Time Shielded and Unshielded Moving SNM Detection Using Large-Array Tensioned Metastable Fluid Detectors</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description><![CDATA[This article discusses the design and performance of a single array of centrifugally tensioned metastable fluid detectors (CTMFDs) for real-time detection of shielded and unshielded neutron-emitting special nuclear materials (SNMs), both while moving and stationary, and at variable standoff distances. With the goal to maximize the detection rate of 0.02 eV to 12+ MeV energy range neutrons, the sensor fluid in each CTMFD unit was formulated to include natural boron. At a tensioned negative pressure (<inline-formula> <tex-math notation="LaTeX">P_{\mathrm {neg}} </tex-math></inline-formula>) state of −7 bar, the 16 cc CTMFD intrinsic detection efficiency was measured for both shielded (in <inline-formula> <tex-math notation="LaTeX">12^{\prime \prime } </tex-math></inline-formula> OD paraffin) and unshielded configurations as ~35% against a Pu-Be (<inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>) neutron source emitting <inline-formula> <tex-math notation="LaTeX">2\times 10^{6} </tex-math></inline-formula> n/s. An array of 13 CTMFDs stacked in a rectangular enclosure demonstrated conclusive real-time tracking of the Pu-Be source in the trunk of a car shielded in a 0.3-m (<inline-formula> <tex-math notation="LaTeX">12^{\prime \prime } </tex-math></inline-formula>) OD paraffin bucket, or unshielded at variable standoffs, and while speeding at 20 mph (~32 kph). The measured detection counts range from ~2 to 12 times over background at closest approach standoffs ranging from 20 m (~70 ft) to 4 m (~13 ft), respectively. The experimental scenario was modeled and simulated to explain the paradoxical and nonintuitive experimental findings pertaining to shielded and unshielded SNM cases, both displaying similar detection rates. The relative effects of neutron down-scattering for shielded cases, which increased detection probability-compensating for shield-absorbed reductions, along with shadowing effects from detector panel background shielding, were found to be dominant contributors.]]></description><subject>Arrays</subject><subject>Bars</subject><subject>Boron</subject><subject>Centrifugally tensioned metastable fluid detector (CTMFD)</subject><subject>Detectors</subject><subject>Engineering</subject><subject>Fluids</subject><subject>Monitoring</subject><subject>moving source tracking</subject><subject>neutron detectors</subject><subject>Neutrons</subject><subject>Nuclear Science & Technology</subject><subject>Paraffin</subject><subject>Paraffins</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Sensors</subject><subject>Shielding</subject><subject>special nuclear material (SNM)</subject><subject>standoff detection</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1PwjAUxRujiYi-m_iy6POwn1v7SFDUBDAReG629gIlY8N2mPDfWzL06ebc_k57ehC6J3hACFbPi9l8QDGlA0Ykl5xfoB4RQqZE5PIS9TAmMlVcqWt0E8I2Si6w6KHdFxRVunA7SOYbB5UFmxS1TZZ1-JPT5sfV62Q-myYv0IJpXVMny3DaTQq_hnTofXFMFlCHeHIyQFuEtigrSMbVwdmzrfHhFl2tiirA3Xn20XL8uhi9p5PPt4_RcJIaluE2tbmRhtAcMlsCp6XhXDHMVywTNKPE8jxnIi-VLTlwzoQ1OH5dMihLHGXJ-uixu7cJrdPBuPj-xjR1HWNooiSVkkboqYP2vvk-QGj1tjn4OubSNMcMK0UYixTuKOObEDys9N67XeGPmmB9al7H5vWpeX1uPloeOosDgH9cSZwzJdgvUyd92A</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Ozerov, S.</creator><creator>Boyle, N.</creator><creator>Houghtalen, N.</creator><creator>Taleyarkhan, R. P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9726-4632</orcidid><orcidid>https://orcid.org/0000-0002-6320-4268</orcidid><orcidid>https://orcid.org/0000-0001-7103-3182</orcidid><orcidid>https://orcid.org/0000000263204268</orcidid><orcidid>https://orcid.org/0000000197264632</orcidid><orcidid>https://orcid.org/0000000171033182</orcidid></search><sort><creationdate>20220801</creationdate><title>Real-Time Shielded and Unshielded Moving SNM Detection Using Large-Array Tensioned Metastable Fluid Detectors</title><author>Ozerov, S. ; Boyle, N. ; Houghtalen, N. ; Taleyarkhan, R. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-d7c8c127e6dbe42bc449304f3652621d477357b9db4e4435dc020283ebb0435b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arrays</topic><topic>Bars</topic><topic>Boron</topic><topic>Centrifugally tensioned metastable fluid detector (CTMFD)</topic><topic>Detectors</topic><topic>Engineering</topic><topic>Fluids</topic><topic>Monitoring</topic><topic>moving source tracking</topic><topic>neutron detectors</topic><topic>Neutrons</topic><topic>Nuclear Science & Technology</topic><topic>Paraffin</topic><topic>Paraffins</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Sensors</topic><topic>Shielding</topic><topic>special nuclear material (SNM)</topic><topic>standoff detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ozerov, S.</creatorcontrib><creatorcontrib>Boyle, N.</creatorcontrib><creatorcontrib>Houghtalen, N.</creatorcontrib><creatorcontrib>Taleyarkhan, R. P.</creatorcontrib><creatorcontrib>Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ozerov, S.</au><au>Boyle, N.</au><au>Houghtalen, N.</au><au>Taleyarkhan, R. P.</au><aucorp>Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Shielded and Unshielded Moving SNM Detection Using Large-Array Tensioned Metastable Fluid Detectors</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>69</volume><issue>8</issue><spage>1945</spage><epage>1952</epage><pages>1945-1952</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract><![CDATA[This article discusses the design and performance of a single array of centrifugally tensioned metastable fluid detectors (CTMFDs) for real-time detection of shielded and unshielded neutron-emitting special nuclear materials (SNMs), both while moving and stationary, and at variable standoff distances. With the goal to maximize the detection rate of 0.02 eV to 12+ MeV energy range neutrons, the sensor fluid in each CTMFD unit was formulated to include natural boron. At a tensioned negative pressure (<inline-formula> <tex-math notation="LaTeX">P_{\mathrm {neg}} </tex-math></inline-formula>) state of −7 bar, the 16 cc CTMFD intrinsic detection efficiency was measured for both shielded (in <inline-formula> <tex-math notation="LaTeX">12^{\prime \prime } </tex-math></inline-formula> OD paraffin) and unshielded configurations as ~35% against a Pu-Be (<inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>) neutron source emitting <inline-formula> <tex-math notation="LaTeX">2\times 10^{6} </tex-math></inline-formula> n/s. An array of 13 CTMFDs stacked in a rectangular enclosure demonstrated conclusive real-time tracking of the Pu-Be source in the trunk of a car shielded in a 0.3-m (<inline-formula> <tex-math notation="LaTeX">12^{\prime \prime } </tex-math></inline-formula>) OD paraffin bucket, or unshielded at variable standoffs, and while speeding at 20 mph (~32 kph). The measured detection counts range from ~2 to 12 times over background at closest approach standoffs ranging from 20 m (~70 ft) to 4 m (~13 ft), respectively. The experimental scenario was modeled and simulated to explain the paradoxical and nonintuitive experimental findings pertaining to shielded and unshielded SNM cases, both displaying similar detection rates. The relative effects of neutron down-scattering for shielded cases, which increased detection probability-compensating for shield-absorbed reductions, along with shadowing effects from detector panel background shielding, were found to be dominant contributors.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2022.3184844</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9726-4632</orcidid><orcidid>https://orcid.org/0000-0002-6320-4268</orcidid><orcidid>https://orcid.org/0000-0001-7103-3182</orcidid><orcidid>https://orcid.org/0000000263204268</orcidid><orcidid>https://orcid.org/0000000197264632</orcidid><orcidid>https://orcid.org/0000000171033182</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2022-08, Vol.69 (8), p.1945-1952 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_proquest_journals_2703099133 |
source | IEEE Electronic Library (IEL) |
subjects | Arrays Bars Boron Centrifugally tensioned metastable fluid detector (CTMFD) Detectors Engineering Fluids Monitoring moving source tracking neutron detectors Neutrons Nuclear Science & Technology Paraffin Paraffins Real time Real-time systems Sensors Shielding special nuclear material (SNM) standoff detection |
title | Real-Time Shielded and Unshielded Moving SNM Detection Using Large-Array Tensioned Metastable Fluid Detectors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A11%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Shielded%20and%20Unshielded%20Moving%20SNM%20Detection%20Using%20Large-Array%20Tensioned%20Metastable%20Fluid%20Detectors&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Ozerov,%20S.&rft.aucorp=Oak%20Ridge%20Inst.%20for%20Science%20and%20Education%20(ORISE),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2022-08-01&rft.volume=69&rft.issue=8&rft.spage=1945&rft.epage=1952&rft.pages=1945-1952&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2022.3184844&rft_dat=%3Cproquest_RIE%3E2703099133%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2703099133&rft_id=info:pmid/&rft_ieee_id=9807395&rfr_iscdi=true |