Real-Time Shielded and Unshielded Moving SNM Detection Using Large-Array Tensioned Metastable Fluid Detectors

This article discusses the design and performance of a single array of centrifugally tensioned metastable fluid detectors (CTMFDs) for real-time detection of shielded and unshielded neutron-emitting special nuclear materials (SNMs), both while moving and stationary, and at variable standoff distance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2022-08, Vol.69 (8), p.1945-1952
Hauptverfasser: Ozerov, S., Boyle, N., Houghtalen, N., Taleyarkhan, R. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1952
container_issue 8
container_start_page 1945
container_title IEEE transactions on nuclear science
container_volume 69
creator Ozerov, S.
Boyle, N.
Houghtalen, N.
Taleyarkhan, R. P.
description This article discusses the design and performance of a single array of centrifugally tensioned metastable fluid detectors (CTMFDs) for real-time detection of shielded and unshielded neutron-emitting special nuclear materials (SNMs), both while moving and stationary, and at variable standoff distances. With the goal to maximize the detection rate of 0.02 eV to 12+ MeV energy range neutrons, the sensor fluid in each CTMFD unit was formulated to include natural boron. At a tensioned negative pressure ( P_{\mathrm {neg}} ) state of −7 bar, the 16 cc CTMFD intrinsic detection efficiency was measured for both shielded (in 12^{\prime \prime } OD paraffin) and unshielded configurations as ~35% against a Pu-Be ( \alpha , n ) neutron source emitting 2\times 10^{6} n/s. An array of 13 CTMFDs stacked in a rectangular enclosure demonstrated conclusive real-time tracking of the Pu-Be source in the trunk of a car shielded in a 0.3-m ( 12^{\prime \prime } ) OD paraffin bucket, or unshielded at variable standoffs, and while speeding at 20 mph (~32 kph). The measured detection counts range from ~2 to 12 times over background at closest approach standoffs ranging from 20 m (~70 ft) to 4 m (~13 ft), respectively. The experimental scenario was modeled and simulated to explain the paradoxical and nonintuitive experimental findings pertaining to shielded and unshielded SNM cases, both displaying similar detection rates. The relative effects of neutron down-scattering for shielded cases, which increased detection probability-compensating for shield-absorbed reductions, along with shadowing effects from detector panel background shielding, were found to be dominant contributors.
doi_str_mv 10.1109/TNS.2022.3184844
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2703099133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9807395</ieee_id><sourcerecordid>2703099133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-d7c8c127e6dbe42bc449304f3652621d477357b9db4e4435dc020283ebb0435b3</originalsourceid><addsrcrecordid>eNo9kN1PwjAUxRujiYi-m_iy6POwn1v7SFDUBDAReG629gIlY8N2mPDfWzL06ebc_k57ehC6J3hACFbPi9l8QDGlA0Ykl5xfoB4RQqZE5PIS9TAmMlVcqWt0E8I2Si6w6KHdFxRVunA7SOYbB5UFmxS1TZZ1-JPT5sfV62Q-myYv0IJpXVMny3DaTQq_hnTofXFMFlCHeHIyQFuEtigrSMbVwdmzrfHhFl2tiirA3Xn20XL8uhi9p5PPt4_RcJIaluE2tbmRhtAcMlsCp6XhXDHMVywTNKPE8jxnIi-VLTlwzoQ1OH5dMihLHGXJ-uixu7cJrdPBuPj-xjR1HWNooiSVkkboqYP2vvk-QGj1tjn4OubSNMcMK0UYixTuKOObEDys9N67XeGPmmB9al7H5vWpeX1uPloeOosDgH9cSZwzJdgvUyd92A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703099133</pqid></control><display><type>article</type><title>Real-Time Shielded and Unshielded Moving SNM Detection Using Large-Array Tensioned Metastable Fluid Detectors</title><source>IEEE Electronic Library (IEL)</source><creator>Ozerov, S. ; Boyle, N. ; Houghtalen, N. ; Taleyarkhan, R. P.</creator><creatorcontrib>Ozerov, S. ; Boyle, N. ; Houghtalen, N. ; Taleyarkhan, R. P. ; Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)</creatorcontrib><description><![CDATA[This article discusses the design and performance of a single array of centrifugally tensioned metastable fluid detectors (CTMFDs) for real-time detection of shielded and unshielded neutron-emitting special nuclear materials (SNMs), both while moving and stationary, and at variable standoff distances. With the goal to maximize the detection rate of 0.02 eV to 12+ MeV energy range neutrons, the sensor fluid in each CTMFD unit was formulated to include natural boron. At a tensioned negative pressure (<inline-formula> <tex-math notation="LaTeX">P_{\mathrm {neg}} </tex-math></inline-formula>) state of −7 bar, the 16 cc CTMFD intrinsic detection efficiency was measured for both shielded (in <inline-formula> <tex-math notation="LaTeX">12^{\prime \prime } </tex-math></inline-formula> OD paraffin) and unshielded configurations as ~35% against a Pu-Be (<inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>) neutron source emitting <inline-formula> <tex-math notation="LaTeX">2\times 10^{6} </tex-math></inline-formula> n/s. An array of 13 CTMFDs stacked in a rectangular enclosure demonstrated conclusive real-time tracking of the Pu-Be source in the trunk of a car shielded in a 0.3-m (<inline-formula> <tex-math notation="LaTeX">12^{\prime \prime } </tex-math></inline-formula>) OD paraffin bucket, or unshielded at variable standoffs, and while speeding at 20 mph (~32 kph). The measured detection counts range from ~2 to 12 times over background at closest approach standoffs ranging from 20 m (~70 ft) to 4 m (~13 ft), respectively. The experimental scenario was modeled and simulated to explain the paradoxical and nonintuitive experimental findings pertaining to shielded and unshielded SNM cases, both displaying similar detection rates. The relative effects of neutron down-scattering for shielded cases, which increased detection probability-compensating for shield-absorbed reductions, along with shadowing effects from detector panel background shielding, were found to be dominant contributors.]]></description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2022.3184844</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arrays ; Bars ; Boron ; Centrifugally tensioned metastable fluid detector (CTMFD) ; Detectors ; Engineering ; Fluids ; Monitoring ; moving source tracking ; neutron detectors ; Neutrons ; Nuclear Science &amp; Technology ; Paraffin ; Paraffins ; Real time ; Real-time systems ; Sensors ; Shielding ; special nuclear material (SNM) ; standoff detection</subject><ispartof>IEEE transactions on nuclear science, 2022-08, Vol.69 (8), p.1945-1952</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-d7c8c127e6dbe42bc449304f3652621d477357b9db4e4435dc020283ebb0435b3</citedby><cites>FETCH-LOGICAL-c360t-d7c8c127e6dbe42bc449304f3652621d477357b9db4e4435dc020283ebb0435b3</cites><orcidid>0000-0001-9726-4632 ; 0000-0002-6320-4268 ; 0000-0001-7103-3182 ; 0000000263204268 ; 0000000197264632 ; 0000000171033182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9807395$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9807395$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1982882$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ozerov, S.</creatorcontrib><creatorcontrib>Boyle, N.</creatorcontrib><creatorcontrib>Houghtalen, N.</creatorcontrib><creatorcontrib>Taleyarkhan, R. P.</creatorcontrib><creatorcontrib>Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)</creatorcontrib><title>Real-Time Shielded and Unshielded Moving SNM Detection Using Large-Array Tensioned Metastable Fluid Detectors</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description><![CDATA[This article discusses the design and performance of a single array of centrifugally tensioned metastable fluid detectors (CTMFDs) for real-time detection of shielded and unshielded neutron-emitting special nuclear materials (SNMs), both while moving and stationary, and at variable standoff distances. With the goal to maximize the detection rate of 0.02 eV to 12+ MeV energy range neutrons, the sensor fluid in each CTMFD unit was formulated to include natural boron. At a tensioned negative pressure (<inline-formula> <tex-math notation="LaTeX">P_{\mathrm {neg}} </tex-math></inline-formula>) state of −7 bar, the 16 cc CTMFD intrinsic detection efficiency was measured for both shielded (in <inline-formula> <tex-math notation="LaTeX">12^{\prime \prime } </tex-math></inline-formula> OD paraffin) and unshielded configurations as ~35% against a Pu-Be (<inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>) neutron source emitting <inline-formula> <tex-math notation="LaTeX">2\times 10^{6} </tex-math></inline-formula> n/s. An array of 13 CTMFDs stacked in a rectangular enclosure demonstrated conclusive real-time tracking of the Pu-Be source in the trunk of a car shielded in a 0.3-m (<inline-formula> <tex-math notation="LaTeX">12^{\prime \prime } </tex-math></inline-formula>) OD paraffin bucket, or unshielded at variable standoffs, and while speeding at 20 mph (~32 kph). The measured detection counts range from ~2 to 12 times over background at closest approach standoffs ranging from 20 m (~70 ft) to 4 m (~13 ft), respectively. The experimental scenario was modeled and simulated to explain the paradoxical and nonintuitive experimental findings pertaining to shielded and unshielded SNM cases, both displaying similar detection rates. The relative effects of neutron down-scattering for shielded cases, which increased detection probability-compensating for shield-absorbed reductions, along with shadowing effects from detector panel background shielding, were found to be dominant contributors.]]></description><subject>Arrays</subject><subject>Bars</subject><subject>Boron</subject><subject>Centrifugally tensioned metastable fluid detector (CTMFD)</subject><subject>Detectors</subject><subject>Engineering</subject><subject>Fluids</subject><subject>Monitoring</subject><subject>moving source tracking</subject><subject>neutron detectors</subject><subject>Neutrons</subject><subject>Nuclear Science &amp; Technology</subject><subject>Paraffin</subject><subject>Paraffins</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Sensors</subject><subject>Shielding</subject><subject>special nuclear material (SNM)</subject><subject>standoff detection</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1PwjAUxRujiYi-m_iy6POwn1v7SFDUBDAReG629gIlY8N2mPDfWzL06ebc_k57ehC6J3hACFbPi9l8QDGlA0Ykl5xfoB4RQqZE5PIS9TAmMlVcqWt0E8I2Si6w6KHdFxRVunA7SOYbB5UFmxS1TZZ1-JPT5sfV62Q-myYv0IJpXVMny3DaTQq_hnTofXFMFlCHeHIyQFuEtigrSMbVwdmzrfHhFl2tiirA3Xn20XL8uhi9p5PPt4_RcJIaluE2tbmRhtAcMlsCp6XhXDHMVywTNKPE8jxnIi-VLTlwzoQ1OH5dMihLHGXJ-uixu7cJrdPBuPj-xjR1HWNooiSVkkboqYP2vvk-QGj1tjn4OubSNMcMK0UYixTuKOObEDys9N67XeGPmmB9al7H5vWpeX1uPloeOosDgH9cSZwzJdgvUyd92A</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Ozerov, S.</creator><creator>Boyle, N.</creator><creator>Houghtalen, N.</creator><creator>Taleyarkhan, R. P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9726-4632</orcidid><orcidid>https://orcid.org/0000-0002-6320-4268</orcidid><orcidid>https://orcid.org/0000-0001-7103-3182</orcidid><orcidid>https://orcid.org/0000000263204268</orcidid><orcidid>https://orcid.org/0000000197264632</orcidid><orcidid>https://orcid.org/0000000171033182</orcidid></search><sort><creationdate>20220801</creationdate><title>Real-Time Shielded and Unshielded Moving SNM Detection Using Large-Array Tensioned Metastable Fluid Detectors</title><author>Ozerov, S. ; Boyle, N. ; Houghtalen, N. ; Taleyarkhan, R. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-d7c8c127e6dbe42bc449304f3652621d477357b9db4e4435dc020283ebb0435b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arrays</topic><topic>Bars</topic><topic>Boron</topic><topic>Centrifugally tensioned metastable fluid detector (CTMFD)</topic><topic>Detectors</topic><topic>Engineering</topic><topic>Fluids</topic><topic>Monitoring</topic><topic>moving source tracking</topic><topic>neutron detectors</topic><topic>Neutrons</topic><topic>Nuclear Science &amp; Technology</topic><topic>Paraffin</topic><topic>Paraffins</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Sensors</topic><topic>Shielding</topic><topic>special nuclear material (SNM)</topic><topic>standoff detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ozerov, S.</creatorcontrib><creatorcontrib>Boyle, N.</creatorcontrib><creatorcontrib>Houghtalen, N.</creatorcontrib><creatorcontrib>Taleyarkhan, R. P.</creatorcontrib><creatorcontrib>Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ozerov, S.</au><au>Boyle, N.</au><au>Houghtalen, N.</au><au>Taleyarkhan, R. P.</au><aucorp>Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Shielded and Unshielded Moving SNM Detection Using Large-Array Tensioned Metastable Fluid Detectors</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>69</volume><issue>8</issue><spage>1945</spage><epage>1952</epage><pages>1945-1952</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract><![CDATA[This article discusses the design and performance of a single array of centrifugally tensioned metastable fluid detectors (CTMFDs) for real-time detection of shielded and unshielded neutron-emitting special nuclear materials (SNMs), both while moving and stationary, and at variable standoff distances. With the goal to maximize the detection rate of 0.02 eV to 12+ MeV energy range neutrons, the sensor fluid in each CTMFD unit was formulated to include natural boron. At a tensioned negative pressure (<inline-formula> <tex-math notation="LaTeX">P_{\mathrm {neg}} </tex-math></inline-formula>) state of −7 bar, the 16 cc CTMFD intrinsic detection efficiency was measured for both shielded (in <inline-formula> <tex-math notation="LaTeX">12^{\prime \prime } </tex-math></inline-formula> OD paraffin) and unshielded configurations as ~35% against a Pu-Be (<inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>) neutron source emitting <inline-formula> <tex-math notation="LaTeX">2\times 10^{6} </tex-math></inline-formula> n/s. An array of 13 CTMFDs stacked in a rectangular enclosure demonstrated conclusive real-time tracking of the Pu-Be source in the trunk of a car shielded in a 0.3-m (<inline-formula> <tex-math notation="LaTeX">12^{\prime \prime } </tex-math></inline-formula>) OD paraffin bucket, or unshielded at variable standoffs, and while speeding at 20 mph (~32 kph). The measured detection counts range from ~2 to 12 times over background at closest approach standoffs ranging from 20 m (~70 ft) to 4 m (~13 ft), respectively. The experimental scenario was modeled and simulated to explain the paradoxical and nonintuitive experimental findings pertaining to shielded and unshielded SNM cases, both displaying similar detection rates. The relative effects of neutron down-scattering for shielded cases, which increased detection probability-compensating for shield-absorbed reductions, along with shadowing effects from detector panel background shielding, were found to be dominant contributors.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2022.3184844</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9726-4632</orcidid><orcidid>https://orcid.org/0000-0002-6320-4268</orcidid><orcidid>https://orcid.org/0000-0001-7103-3182</orcidid><orcidid>https://orcid.org/0000000263204268</orcidid><orcidid>https://orcid.org/0000000197264632</orcidid><orcidid>https://orcid.org/0000000171033182</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2022-08, Vol.69 (8), p.1945-1952
issn 0018-9499
1558-1578
language eng
recordid cdi_proquest_journals_2703099133
source IEEE Electronic Library (IEL)
subjects Arrays
Bars
Boron
Centrifugally tensioned metastable fluid detector (CTMFD)
Detectors
Engineering
Fluids
Monitoring
moving source tracking
neutron detectors
Neutrons
Nuclear Science & Technology
Paraffin
Paraffins
Real time
Real-time systems
Sensors
Shielding
special nuclear material (SNM)
standoff detection
title Real-Time Shielded and Unshielded Moving SNM Detection Using Large-Array Tensioned Metastable Fluid Detectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A11%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Shielded%20and%20Unshielded%20Moving%20SNM%20Detection%20Using%20Large-Array%20Tensioned%20Metastable%20Fluid%20Detectors&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Ozerov,%20S.&rft.aucorp=Oak%20Ridge%20Inst.%20for%20Science%20and%20Education%20(ORISE),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2022-08-01&rft.volume=69&rft.issue=8&rft.spage=1945&rft.epage=1952&rft.pages=1945-1952&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2022.3184844&rft_dat=%3Cproquest_RIE%3E2703099133%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2703099133&rft_id=info:pmid/&rft_ieee_id=9807395&rfr_iscdi=true