Narrow bandgap potassium titanate-molybdate-based d0 ferroelectrics
The bulk photovoltaic effect observed in ferroelectric materials can enable photovoltaic performance beyond the Shockley–Queisser limit of efficiency. This requires the use of ferroelectrics with strong polarization and low bandgap (Eg) that are typically contradictory in the common perovskite oxide...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2022-08, Vol.132 (7) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 132 |
creator | Shafir, Or Grinberg, Ilya |
description | The bulk photovoltaic effect observed in ferroelectric materials can enable photovoltaic performance beyond the Shockley–Queisser limit of efficiency. This requires the use of ferroelectrics with strong polarization and low bandgap (Eg) that are typically contradictory in the common perovskite oxides ferroelectrics. Here, we use first-principles calculations to study the KNbO3–K(Ti0.5Mo0.5)O3 (KNTM) solid solutions as possible narrow-gap ferroelectric materials. KTM, the end-member of the recently discovered KNTM solid solution system, maintains a ferroelectric polarization similar to that of other K-based systems due to its d0 configuration at the B-site. The substitution of Nb in KTM reduces Eg from 2.9 of KTM to 1.83 eV for an unstrained system and 1.7 eV for a compressively strained system, while maintaining ferroelectricity. The combination of narrow Eg, strong ferroelectricity, low toxicity, and abundance of the constituent elements make Nb-substituted KTM a promising candidate material for photoferroelectric applications. |
doi_str_mv | 10.1063/5.0099143 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2702616042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2702616042</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-b486ac51ad11acd82de22aed91fc5673c626795dbf7ff7d2a7f04b807cd5c7d43</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_8GCN2HrTHaTbI5S_IKiFz2HbD5kS7tZk6zSf--WFrx5mjk87zvMQ8g1wgKBV3dsASAl1tUJmSE0shSMwSmZAVAsGynkOblIaQ2A2FRyRpavOsbwU7S6t596KIaQdUrduC1yl3Wvsyu3YbNr7X5rdXK2sFB4N4XcxpkcO5MuyZnXm-SujnNOPh4f3pfP5ert6WV5vyoHik0u27rh2jDUFlEb21DrKNXOSvSGcVEZTrmQzLZeeC8s1cJD3TYgjGVG2Lqak5tD7xDD1-hSVuswxn46qagAypFDTSfq9kAlM32Qu9CrIXZbHXcKQe0lKaaOkv6Dv0P8A9VgffULv9Joig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2702616042</pqid></control><display><type>article</type><title>Narrow bandgap potassium titanate-molybdate-based d0 ferroelectrics</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Shafir, Or ; Grinberg, Ilya</creator><creatorcontrib>Shafir, Or ; Grinberg, Ilya</creatorcontrib><description>The bulk photovoltaic effect observed in ferroelectric materials can enable photovoltaic performance beyond the Shockley–Queisser limit of efficiency. This requires the use of ferroelectrics with strong polarization and low bandgap (Eg) that are typically contradictory in the common perovskite oxides ferroelectrics. Here, we use first-principles calculations to study the KNbO3–K(Ti0.5Mo0.5)O3 (KNTM) solid solutions as possible narrow-gap ferroelectric materials. KTM, the end-member of the recently discovered KNTM solid solution system, maintains a ferroelectric polarization similar to that of other K-based systems due to its d0 configuration at the B-site. The substitution of Nb in KTM reduces Eg from 2.9 of KTM to 1.83 eV for an unstrained system and 1.7 eV for a compressively strained system, while maintaining ferroelectricity. The combination of narrow Eg, strong ferroelectricity, low toxicity, and abundance of the constituent elements make Nb-substituted KTM a promising candidate material for photoferroelectric applications.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0099143</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Energy gap ; Ferroelectric materials ; Ferroelectricity ; First principles ; Iron constituents ; Materials selection ; Niobium ; Perovskites ; Photovoltaic effect ; Polarization ; Potassium niobates ; Solid solutions ; Toxicity</subject><ispartof>Journal of applied physics, 2022-08, Vol.132 (7)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0756-4151 ; 0000-0002-3424-659X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0099143$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76131</link.rule.ids></links><search><creatorcontrib>Shafir, Or</creatorcontrib><creatorcontrib>Grinberg, Ilya</creatorcontrib><title>Narrow bandgap potassium titanate-molybdate-based d0 ferroelectrics</title><title>Journal of applied physics</title><description>The bulk photovoltaic effect observed in ferroelectric materials can enable photovoltaic performance beyond the Shockley–Queisser limit of efficiency. This requires the use of ferroelectrics with strong polarization and low bandgap (Eg) that are typically contradictory in the common perovskite oxides ferroelectrics. Here, we use first-principles calculations to study the KNbO3–K(Ti0.5Mo0.5)O3 (KNTM) solid solutions as possible narrow-gap ferroelectric materials. KTM, the end-member of the recently discovered KNTM solid solution system, maintains a ferroelectric polarization similar to that of other K-based systems due to its d0 configuration at the B-site. The substitution of Nb in KTM reduces Eg from 2.9 of KTM to 1.83 eV for an unstrained system and 1.7 eV for a compressively strained system, while maintaining ferroelectricity. The combination of narrow Eg, strong ferroelectricity, low toxicity, and abundance of the constituent elements make Nb-substituted KTM a promising candidate material for photoferroelectric applications.</description><subject>Applied physics</subject><subject>Energy gap</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>First principles</subject><subject>Iron constituents</subject><subject>Materials selection</subject><subject>Niobium</subject><subject>Perovskites</subject><subject>Photovoltaic effect</subject><subject>Polarization</subject><subject>Potassium niobates</subject><subject>Solid solutions</subject><subject>Toxicity</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_8GCN2HrTHaTbI5S_IKiFz2HbD5kS7tZk6zSf--WFrx5mjk87zvMQ8g1wgKBV3dsASAl1tUJmSE0shSMwSmZAVAsGynkOblIaQ2A2FRyRpavOsbwU7S6t596KIaQdUrduC1yl3Wvsyu3YbNr7X5rdXK2sFB4N4XcxpkcO5MuyZnXm-SujnNOPh4f3pfP5ert6WV5vyoHik0u27rh2jDUFlEb21DrKNXOSvSGcVEZTrmQzLZeeC8s1cJD3TYgjGVG2Lqak5tD7xDD1-hSVuswxn46qagAypFDTSfq9kAlM32Qu9CrIXZbHXcKQe0lKaaOkv6Dv0P8A9VgffULv9Joig</recordid><startdate>20220821</startdate><enddate>20220821</enddate><creator>Shafir, Or</creator><creator>Grinberg, Ilya</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0756-4151</orcidid><orcidid>https://orcid.org/0000-0002-3424-659X</orcidid></search><sort><creationdate>20220821</creationdate><title>Narrow bandgap potassium titanate-molybdate-based d0 ferroelectrics</title><author>Shafir, Or ; Grinberg, Ilya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-b486ac51ad11acd82de22aed91fc5673c626795dbf7ff7d2a7f04b807cd5c7d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Energy gap</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>First principles</topic><topic>Iron constituents</topic><topic>Materials selection</topic><topic>Niobium</topic><topic>Perovskites</topic><topic>Photovoltaic effect</topic><topic>Polarization</topic><topic>Potassium niobates</topic><topic>Solid solutions</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shafir, Or</creatorcontrib><creatorcontrib>Grinberg, Ilya</creatorcontrib><collection>AIP Open Access Journals</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shafir, Or</au><au>Grinberg, Ilya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Narrow bandgap potassium titanate-molybdate-based d0 ferroelectrics</atitle><jtitle>Journal of applied physics</jtitle><date>2022-08-21</date><risdate>2022</risdate><volume>132</volume><issue>7</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The bulk photovoltaic effect observed in ferroelectric materials can enable photovoltaic performance beyond the Shockley–Queisser limit of efficiency. This requires the use of ferroelectrics with strong polarization and low bandgap (Eg) that are typically contradictory in the common perovskite oxides ferroelectrics. Here, we use first-principles calculations to study the KNbO3–K(Ti0.5Mo0.5)O3 (KNTM) solid solutions as possible narrow-gap ferroelectric materials. KTM, the end-member of the recently discovered KNTM solid solution system, maintains a ferroelectric polarization similar to that of other K-based systems due to its d0 configuration at the B-site. The substitution of Nb in KTM reduces Eg from 2.9 of KTM to 1.83 eV for an unstrained system and 1.7 eV for a compressively strained system, while maintaining ferroelectricity. The combination of narrow Eg, strong ferroelectricity, low toxicity, and abundance of the constituent elements make Nb-substituted KTM a promising candidate material for photoferroelectric applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0099143</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0756-4151</orcidid><orcidid>https://orcid.org/0000-0002-3424-659X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2022-08, Vol.132 (7) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2702616042 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Energy gap Ferroelectric materials Ferroelectricity First principles Iron constituents Materials selection Niobium Perovskites Photovoltaic effect Polarization Potassium niobates Solid solutions Toxicity |
title | Narrow bandgap potassium titanate-molybdate-based d0 ferroelectrics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A01%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Narrow%20bandgap%20potassium%20titanate-molybdate-based%20d0%20ferroelectrics&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Shafir,%20Or&rft.date=2022-08-21&rft.volume=132&rft.issue=7&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0099143&rft_dat=%3Cproquest_scita%3E2702616042%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2702616042&rft_id=info:pmid/&rfr_iscdi=true |