Efficient hyperreduction of high-order discontinuous Galerkin methods: Element-wise and point-wise reduced quadrature formulations

We develop and assess projection-based model reduction methods for high-order discontinuous Galerkin (DG) discretizations of parametrized nonlinear partial differential equations with applications in aerodynamics. Our emphasis is on the choice of hyperreduction methods. We analyze computational comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2022-10, Vol.466, p.111399, Article 111399
Hauptverfasser: Du, Eugene, Yano, Masayuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 111399
container_title Journal of computational physics
container_volume 466
creator Du, Eugene
Yano, Masayuki
description We develop and assess projection-based model reduction methods for high-order discontinuous Galerkin (DG) discretizations of parametrized nonlinear partial differential equations with applications in aerodynamics. Our emphasis is on the choice of hyperreduction methods. We analyze computational complexity and use numerical examples to show that typical hyperreduction methods based on element-wise or index-wise sampling of the residual vector cannot effectively reduce high-order DG discretizations, with a large number of degrees of freedom and quadrature points per element and conversely a small number of elements. To overcome this limitation, we devise a hyperreduction method for high-order DG methods that samples individual quadrature points, instead of elements, to provide a finer decomposition of the residual. We compare the formulation, implementation, and computational complexity of the element-wise and point-wise formulations. We then numerically assess the two formulations using Euler flow over a shape-parametrized airfoil and laminar and turbulent Navier-Stokes flow over a three-dimensional aerodynamic body. In each case, we observe that the point-wise hyperreduced model reduces the computational time by several orders of magnitude relative to the high-order DG method and a few orders of magnitude relative to the element-wise hyperreduced model. In addition, the computational performance of the point-wise formulation does not deteriorate with the DG polynomial degree, unlike for the element-wise formulation.
doi_str_mv 10.1016/j.jcp.2022.111399
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2702530860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2702530860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-f63cfee90c0e0d07f79509714bdeb0feefda6305408697d1be1b7a668b0e4983</originalsourceid><addsrcrecordid>eNo1kMtOwzAQRS0EEqXwAewssU4Z5-WYHapKQarEpnvLicfEIYlTOxHqli8npbAajebOudIh5J7BigHLH5tVUw2rGOJ4xRhLhLggCwYCopiz_JIsAGIWCSHYNbkJoQGAIkuLBfneGGMri_1I6-OA3qOeqtG6njpDa_tRR85r9FTbULl-tP3kpkC3qkX_aXva4Vg7HZ7opsVuhkRfNiBVvaaDs__rLxM1PUxKezVOHqlxvptadSoKt-TKqDbg3d9ckv3LZr9-jXbv27f18y6qYp6MkcmTyiAKqABBAzdcZCA4S0uNJcwXo1WeQJZCkQuuWYms5CrPixIwFUWyJA9n7ODdYcIwysZNvp8bZcwhzpL5D-YUO6cq70LwaOTgbaf8UTKQJ9OykbNpeTItz6aTH4lodhc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2702530860</pqid></control><display><type>article</type><title>Efficient hyperreduction of high-order discontinuous Galerkin methods: Element-wise and point-wise reduced quadrature formulations</title><source>Access via ScienceDirect (Elsevier)</source><creator>Du, Eugene ; Yano, Masayuki</creator><creatorcontrib>Du, Eugene ; Yano, Masayuki</creatorcontrib><description>We develop and assess projection-based model reduction methods for high-order discontinuous Galerkin (DG) discretizations of parametrized nonlinear partial differential equations with applications in aerodynamics. Our emphasis is on the choice of hyperreduction methods. We analyze computational complexity and use numerical examples to show that typical hyperreduction methods based on element-wise or index-wise sampling of the residual vector cannot effectively reduce high-order DG discretizations, with a large number of degrees of freedom and quadrature points per element and conversely a small number of elements. To overcome this limitation, we devise a hyperreduction method for high-order DG methods that samples individual quadrature points, instead of elements, to provide a finer decomposition of the residual. We compare the formulation, implementation, and computational complexity of the element-wise and point-wise formulations. We then numerically assess the two formulations using Euler flow over a shape-parametrized airfoil and laminar and turbulent Navier-Stokes flow over a three-dimensional aerodynamic body. In each case, we observe that the point-wise hyperreduced model reduces the computational time by several orders of magnitude relative to the high-order DG method and a few orders of magnitude relative to the element-wise hyperreduced model. In addition, the computational performance of the point-wise formulation does not deteriorate with the DG polynomial degree, unlike for the element-wise formulation.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2022.111399</identifier><language>eng</language><publisher>Cambridge: Elsevier Science Ltd</publisher><subject>Complexity ; Computational physics ; Computing time ; Galerkin method ; Laminar flow ; Mathematical analysis ; Mathematical models ; Model reduction ; Nonlinear differential equations ; Parameterization ; Partial differential equations ; Polynomials ; Quadratures ; Stokes flow ; Three dimensional flow ; Turbulent flow</subject><ispartof>Journal of computational physics, 2022-10, Vol.466, p.111399, Article 111399</ispartof><rights>Copyright Elsevier Science Ltd. Oct 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-f63cfee90c0e0d07f79509714bdeb0feefda6305408697d1be1b7a668b0e4983</citedby><cites>FETCH-LOGICAL-c273t-f63cfee90c0e0d07f79509714bdeb0feefda6305408697d1be1b7a668b0e4983</cites><orcidid>0000-0002-9329-4508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Du, Eugene</creatorcontrib><creatorcontrib>Yano, Masayuki</creatorcontrib><title>Efficient hyperreduction of high-order discontinuous Galerkin methods: Element-wise and point-wise reduced quadrature formulations</title><title>Journal of computational physics</title><description>We develop and assess projection-based model reduction methods for high-order discontinuous Galerkin (DG) discretizations of parametrized nonlinear partial differential equations with applications in aerodynamics. Our emphasis is on the choice of hyperreduction methods. We analyze computational complexity and use numerical examples to show that typical hyperreduction methods based on element-wise or index-wise sampling of the residual vector cannot effectively reduce high-order DG discretizations, with a large number of degrees of freedom and quadrature points per element and conversely a small number of elements. To overcome this limitation, we devise a hyperreduction method for high-order DG methods that samples individual quadrature points, instead of elements, to provide a finer decomposition of the residual. We compare the formulation, implementation, and computational complexity of the element-wise and point-wise formulations. We then numerically assess the two formulations using Euler flow over a shape-parametrized airfoil and laminar and turbulent Navier-Stokes flow over a three-dimensional aerodynamic body. In each case, we observe that the point-wise hyperreduced model reduces the computational time by several orders of magnitude relative to the high-order DG method and a few orders of magnitude relative to the element-wise hyperreduced model. In addition, the computational performance of the point-wise formulation does not deteriorate with the DG polynomial degree, unlike for the element-wise formulation.</description><subject>Complexity</subject><subject>Computational physics</subject><subject>Computing time</subject><subject>Galerkin method</subject><subject>Laminar flow</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Model reduction</subject><subject>Nonlinear differential equations</subject><subject>Parameterization</subject><subject>Partial differential equations</subject><subject>Polynomials</subject><subject>Quadratures</subject><subject>Stokes flow</subject><subject>Three dimensional flow</subject><subject>Turbulent flow</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo1kMtOwzAQRS0EEqXwAewssU4Z5-WYHapKQarEpnvLicfEIYlTOxHqli8npbAajebOudIh5J7BigHLH5tVUw2rGOJ4xRhLhLggCwYCopiz_JIsAGIWCSHYNbkJoQGAIkuLBfneGGMri_1I6-OA3qOeqtG6njpDa_tRR85r9FTbULl-tP3kpkC3qkX_aXva4Vg7HZ7opsVuhkRfNiBVvaaDs__rLxM1PUxKezVOHqlxvptadSoKt-TKqDbg3d9ckv3LZr9-jXbv27f18y6qYp6MkcmTyiAKqABBAzdcZCA4S0uNJcwXo1WeQJZCkQuuWYms5CrPixIwFUWyJA9n7ODdYcIwysZNvp8bZcwhzpL5D-YUO6cq70LwaOTgbaf8UTKQJ9OykbNpeTItz6aTH4lodhc</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Du, Eugene</creator><creator>Yano, Masayuki</creator><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9329-4508</orcidid></search><sort><creationdate>202210</creationdate><title>Efficient hyperreduction of high-order discontinuous Galerkin methods: Element-wise and point-wise reduced quadrature formulations</title><author>Du, Eugene ; Yano, Masayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-f63cfee90c0e0d07f79509714bdeb0feefda6305408697d1be1b7a668b0e4983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Complexity</topic><topic>Computational physics</topic><topic>Computing time</topic><topic>Galerkin method</topic><topic>Laminar flow</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Model reduction</topic><topic>Nonlinear differential equations</topic><topic>Parameterization</topic><topic>Partial differential equations</topic><topic>Polynomials</topic><topic>Quadratures</topic><topic>Stokes flow</topic><topic>Three dimensional flow</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Eugene</creatorcontrib><creatorcontrib>Yano, Masayuki</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Eugene</au><au>Yano, Masayuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient hyperreduction of high-order discontinuous Galerkin methods: Element-wise and point-wise reduced quadrature formulations</atitle><jtitle>Journal of computational physics</jtitle><date>2022-10</date><risdate>2022</risdate><volume>466</volume><spage>111399</spage><pages>111399-</pages><artnum>111399</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We develop and assess projection-based model reduction methods for high-order discontinuous Galerkin (DG) discretizations of parametrized nonlinear partial differential equations with applications in aerodynamics. Our emphasis is on the choice of hyperreduction methods. We analyze computational complexity and use numerical examples to show that typical hyperreduction methods based on element-wise or index-wise sampling of the residual vector cannot effectively reduce high-order DG discretizations, with a large number of degrees of freedom and quadrature points per element and conversely a small number of elements. To overcome this limitation, we devise a hyperreduction method for high-order DG methods that samples individual quadrature points, instead of elements, to provide a finer decomposition of the residual. We compare the formulation, implementation, and computational complexity of the element-wise and point-wise formulations. We then numerically assess the two formulations using Euler flow over a shape-parametrized airfoil and laminar and turbulent Navier-Stokes flow over a three-dimensional aerodynamic body. In each case, we observe that the point-wise hyperreduced model reduces the computational time by several orders of magnitude relative to the high-order DG method and a few orders of magnitude relative to the element-wise hyperreduced model. In addition, the computational performance of the point-wise formulation does not deteriorate with the DG polynomial degree, unlike for the element-wise formulation.</abstract><cop>Cambridge</cop><pub>Elsevier Science Ltd</pub><doi>10.1016/j.jcp.2022.111399</doi><orcidid>https://orcid.org/0000-0002-9329-4508</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2022-10, Vol.466, p.111399, Article 111399
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_journals_2702530860
source Access via ScienceDirect (Elsevier)
subjects Complexity
Computational physics
Computing time
Galerkin method
Laminar flow
Mathematical analysis
Mathematical models
Model reduction
Nonlinear differential equations
Parameterization
Partial differential equations
Polynomials
Quadratures
Stokes flow
Three dimensional flow
Turbulent flow
title Efficient hyperreduction of high-order discontinuous Galerkin methods: Element-wise and point-wise reduced quadrature formulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A07%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20hyperreduction%20of%20high-order%20discontinuous%20Galerkin%20methods:%20Element-wise%20and%20point-wise%20reduced%20quadrature%20formulations&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Du,%20Eugene&rft.date=2022-10&rft.volume=466&rft.spage=111399&rft.pages=111399-&rft.artnum=111399&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2022.111399&rft_dat=%3Cproquest_cross%3E2702530860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2702530860&rft_id=info:pmid/&rfr_iscdi=true