Enhancing performance of anode-free Li-metal batteries by addition of ceramic nanoparticles Part II
Because of their higher energy density, compared to lithium-ion batteries, rechargeable lithium-metal batteries (LMBs) have been considered one of the most attractive next-generation energy-storage systems (ESS). A promising approach to improving LMB performance, which has gained interest in recent...
Gespeichert in:
Veröffentlicht in: | Journal of solid state electrochemistry 2022-09, Vol.26 (9), p.2027-2038 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2038 |
---|---|
container_issue | 9 |
container_start_page | 2027 |
container_title | Journal of solid state electrochemistry |
container_volume | 26 |
creator | Marrache, Roy Mukra, Tzach Shekhter, Pini Peled, Emanuel |
description | Because of their higher energy density, compared to lithium-ion batteries, rechargeable lithium-metal batteries (LMBs) have been considered one of the most attractive next-generation energy-storage systems (ESS). A promising approach to improving LMB performance, which has gained interest in recent years, is the use of anode-free lithium-metal batteries (AFLMBs). Such battery configuration enables elimination of the problem of using excessive amounts of lithium in LMBs, hence increasing the specific energy of the battery. Another approach is to use a solid-state electrolyte (SSE) which increases energy density and decreases safety concerns. This work explores the beneficial effects of integrating metal-oxide nanoparticles (MONPs) into the liquid electrolyte of AFLMB. It was found that the addition to the electrolyte of low concentrations of MONPs significantly improves coulombic efficiency (CE), capacity retention (CR), and the solid-electrolyte-interphase (SEI) properties. Cells with 1% In
2
O
3
or 1% ZnO addition resulted in 99.6% and 99.2% CE, and CR of 70% within 46 and 39 cycles, respectively. Combination of these MONPs resulted in 99.9% CE. |
doi_str_mv | 10.1007/s10008-022-05163-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2702497263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2702497263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-2e51ce9e24118d89721074dc1ad9ba9ed8f745077bb80a0939919cad43879a3e3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdTSPmUmylFK1UNCFrkMmuVNTOpmaTBf996aO4M7NfcB3zoGD0C2j94xS-ZDLpIpQzgmtWSNIfYZmrBKCUNmo85-bE1UpdYmuct5SymTD6Ay5Zfy00YW4wXtI3ZD68gEeOmzj4IF0CQCvA-lhtDvc2nGEFCDj9oit92EMQzzBDpLtg8OxqPY2jcHtCvRWLrxaXaOLzu4y3PzuOfp4Wr4vXsj69Xm1eFwTxys9Eg41c6CBV4wpr7TkjMrKO2a9bq0GrzpZ1VTKtlXUUi20ZtpZXwkltRUg5uhu8t2n4esAeTTb4ZBiiTRc0pIheSMKxSfKpSHnBJ3Zp9DbdDSMmlOZZirTlDLNT5mmLiIxiXKB4wbSn_U_qm96KXcD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2702497263</pqid></control><display><type>article</type><title>Enhancing performance of anode-free Li-metal batteries by addition of ceramic nanoparticles Part II</title><source>SpringerLink Journals - AutoHoldings</source><creator>Marrache, Roy ; Mukra, Tzach ; Shekhter, Pini ; Peled, Emanuel</creator><creatorcontrib>Marrache, Roy ; Mukra, Tzach ; Shekhter, Pini ; Peled, Emanuel</creatorcontrib><description>Because of their higher energy density, compared to lithium-ion batteries, rechargeable lithium-metal batteries (LMBs) have been considered one of the most attractive next-generation energy-storage systems (ESS). A promising approach to improving LMB performance, which has gained interest in recent years, is the use of anode-free lithium-metal batteries (AFLMBs). Such battery configuration enables elimination of the problem of using excessive amounts of lithium in LMBs, hence increasing the specific energy of the battery. Another approach is to use a solid-state electrolyte (SSE) which increases energy density and decreases safety concerns. This work explores the beneficial effects of integrating metal-oxide nanoparticles (MONPs) into the liquid electrolyte of AFLMB. It was found that the addition to the electrolyte of low concentrations of MONPs significantly improves coulombic efficiency (CE), capacity retention (CR), and the solid-electrolyte-interphase (SEI) properties. Cells with 1% In
2
O
3
or 1% ZnO addition resulted in 99.6% and 99.2% CE, and CR of 70% within 46 and 39 cycles, respectively. Combination of these MONPs resulted in 99.9% CE.</description><identifier>ISSN: 1432-8488</identifier><identifier>EISSN: 1433-0768</identifier><identifier>DOI: 10.1007/s10008-022-05163-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Anodes ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrochemistry ; Electrolytes ; Electrolytic cells ; Energy Storage ; Indium oxides ; Lithium ; Lithium batteries ; Lithium-ion batteries ; Low concentrations ; Metal oxides ; Nanoparticles ; Original Paper ; Performance enhancement ; Physical Chemistry ; Rechargeable batteries ; Specific energy ; Storage systems ; Zinc oxide</subject><ispartof>Journal of solid state electrochemistry, 2022-09, Vol.26 (9), p.2027-2038</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. corrected publication 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-2e51ce9e24118d89721074dc1ad9ba9ed8f745077bb80a0939919cad43879a3e3</citedby><cites>FETCH-LOGICAL-c249t-2e51ce9e24118d89721074dc1ad9ba9ed8f745077bb80a0939919cad43879a3e3</cites><orcidid>0000-0001-6949-553X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10008-022-05163-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10008-022-05163-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Marrache, Roy</creatorcontrib><creatorcontrib>Mukra, Tzach</creatorcontrib><creatorcontrib>Shekhter, Pini</creatorcontrib><creatorcontrib>Peled, Emanuel</creatorcontrib><title>Enhancing performance of anode-free Li-metal batteries by addition of ceramic nanoparticles Part II</title><title>Journal of solid state electrochemistry</title><addtitle>J Solid State Electrochem</addtitle><description>Because of their higher energy density, compared to lithium-ion batteries, rechargeable lithium-metal batteries (LMBs) have been considered one of the most attractive next-generation energy-storage systems (ESS). A promising approach to improving LMB performance, which has gained interest in recent years, is the use of anode-free lithium-metal batteries (AFLMBs). Such battery configuration enables elimination of the problem of using excessive amounts of lithium in LMBs, hence increasing the specific energy of the battery. Another approach is to use a solid-state electrolyte (SSE) which increases energy density and decreases safety concerns. This work explores the beneficial effects of integrating metal-oxide nanoparticles (MONPs) into the liquid electrolyte of AFLMB. It was found that the addition to the electrolyte of low concentrations of MONPs significantly improves coulombic efficiency (CE), capacity retention (CR), and the solid-electrolyte-interphase (SEI) properties. Cells with 1% In
2
O
3
or 1% ZnO addition resulted in 99.6% and 99.2% CE, and CR of 70% within 46 and 39 cycles, respectively. Combination of these MONPs resulted in 99.9% CE.</description><subject>Analytical Chemistry</subject><subject>Anodes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Energy Storage</subject><subject>Indium oxides</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>Low concentrations</subject><subject>Metal oxides</subject><subject>Nanoparticles</subject><subject>Original Paper</subject><subject>Performance enhancement</subject><subject>Physical Chemistry</subject><subject>Rechargeable batteries</subject><subject>Specific energy</subject><subject>Storage systems</subject><subject>Zinc oxide</subject><issn>1432-8488</issn><issn>1433-0768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdTSPmUmylFK1UNCFrkMmuVNTOpmaTBf996aO4M7NfcB3zoGD0C2j94xS-ZDLpIpQzgmtWSNIfYZmrBKCUNmo85-bE1UpdYmuct5SymTD6Ay5Zfy00YW4wXtI3ZD68gEeOmzj4IF0CQCvA-lhtDvc2nGEFCDj9oit92EMQzzBDpLtg8OxqPY2jcHtCvRWLrxaXaOLzu4y3PzuOfp4Wr4vXsj69Xm1eFwTxys9Eg41c6CBV4wpr7TkjMrKO2a9bq0GrzpZ1VTKtlXUUi20ZtpZXwkltRUg5uhu8t2n4esAeTTb4ZBiiTRc0pIheSMKxSfKpSHnBJ3Zp9DbdDSMmlOZZirTlDLNT5mmLiIxiXKB4wbSn_U_qm96KXcD</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Marrache, Roy</creator><creator>Mukra, Tzach</creator><creator>Shekhter, Pini</creator><creator>Peled, Emanuel</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6949-553X</orcidid></search><sort><creationdate>20220901</creationdate><title>Enhancing performance of anode-free Li-metal batteries by addition of ceramic nanoparticles Part II</title><author>Marrache, Roy ; Mukra, Tzach ; Shekhter, Pini ; Peled, Emanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-2e51ce9e24118d89721074dc1ad9ba9ed8f745077bb80a0939919cad43879a3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical Chemistry</topic><topic>Anodes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Energy Storage</topic><topic>Indium oxides</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>Low concentrations</topic><topic>Metal oxides</topic><topic>Nanoparticles</topic><topic>Original Paper</topic><topic>Performance enhancement</topic><topic>Physical Chemistry</topic><topic>Rechargeable batteries</topic><topic>Specific energy</topic><topic>Storage systems</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marrache, Roy</creatorcontrib><creatorcontrib>Mukra, Tzach</creatorcontrib><creatorcontrib>Shekhter, Pini</creatorcontrib><creatorcontrib>Peled, Emanuel</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of solid state electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marrache, Roy</au><au>Mukra, Tzach</au><au>Shekhter, Pini</au><au>Peled, Emanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing performance of anode-free Li-metal batteries by addition of ceramic nanoparticles Part II</atitle><jtitle>Journal of solid state electrochemistry</jtitle><stitle>J Solid State Electrochem</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>26</volume><issue>9</issue><spage>2027</spage><epage>2038</epage><pages>2027-2038</pages><issn>1432-8488</issn><eissn>1433-0768</eissn><abstract>Because of their higher energy density, compared to lithium-ion batteries, rechargeable lithium-metal batteries (LMBs) have been considered one of the most attractive next-generation energy-storage systems (ESS). A promising approach to improving LMB performance, which has gained interest in recent years, is the use of anode-free lithium-metal batteries (AFLMBs). Such battery configuration enables elimination of the problem of using excessive amounts of lithium in LMBs, hence increasing the specific energy of the battery. Another approach is to use a solid-state electrolyte (SSE) which increases energy density and decreases safety concerns. This work explores the beneficial effects of integrating metal-oxide nanoparticles (MONPs) into the liquid electrolyte of AFLMB. It was found that the addition to the electrolyte of low concentrations of MONPs significantly improves coulombic efficiency (CE), capacity retention (CR), and the solid-electrolyte-interphase (SEI) properties. Cells with 1% In
2
O
3
or 1% ZnO addition resulted in 99.6% and 99.2% CE, and CR of 70% within 46 and 39 cycles, respectively. Combination of these MONPs resulted in 99.9% CE.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10008-022-05163-5</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6949-553X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-8488 |
ispartof | Journal of solid state electrochemistry, 2022-09, Vol.26 (9), p.2027-2038 |
issn | 1432-8488 1433-0768 |
language | eng |
recordid | cdi_proquest_journals_2702497263 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analytical Chemistry Anodes Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Condensed Matter Physics Electrochemistry Electrolytes Electrolytic cells Energy Storage Indium oxides Lithium Lithium batteries Lithium-ion batteries Low concentrations Metal oxides Nanoparticles Original Paper Performance enhancement Physical Chemistry Rechargeable batteries Specific energy Storage systems Zinc oxide |
title | Enhancing performance of anode-free Li-metal batteries by addition of ceramic nanoparticles Part II |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A31%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20performance%20of%20anode-free%20Li-metal%20batteries%20by%20addition%20of%20ceramic%20nanoparticles%20Part%20II&rft.jtitle=Journal%20of%20solid%20state%20electrochemistry&rft.au=Marrache,%20Roy&rft.date=2022-09-01&rft.volume=26&rft.issue=9&rft.spage=2027&rft.epage=2038&rft.pages=2027-2038&rft.issn=1432-8488&rft.eissn=1433-0768&rft_id=info:doi/10.1007/s10008-022-05163-5&rft_dat=%3Cproquest_cross%3E2702497263%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2702497263&rft_id=info:pmid/&rfr_iscdi=true |