Enhancing performance of anode-free Li-metal batteries by addition of ceramic nanoparticles Part II

Because of their higher energy density, compared to lithium-ion batteries, rechargeable lithium-metal batteries (LMBs) have been considered one of the most attractive next-generation energy-storage systems (ESS). A promising approach to improving LMB performance, which has gained interest in recent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solid state electrochemistry 2022-09, Vol.26 (9), p.2027-2038
Hauptverfasser: Marrache, Roy, Mukra, Tzach, Shekhter, Pini, Peled, Emanuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2038
container_issue 9
container_start_page 2027
container_title Journal of solid state electrochemistry
container_volume 26
creator Marrache, Roy
Mukra, Tzach
Shekhter, Pini
Peled, Emanuel
description Because of their higher energy density, compared to lithium-ion batteries, rechargeable lithium-metal batteries (LMBs) have been considered one of the most attractive next-generation energy-storage systems (ESS). A promising approach to improving LMB performance, which has gained interest in recent years, is the use of anode-free lithium-metal batteries (AFLMBs). Such battery configuration enables elimination of the problem of using excessive amounts of lithium in LMBs, hence increasing the specific energy of the battery. Another approach is to use a solid-state electrolyte (SSE) which increases energy density and decreases safety concerns. This work explores the beneficial effects of integrating metal-oxide nanoparticles (MONPs) into the liquid electrolyte of AFLMB. It was found that the addition to the electrolyte of low concentrations of MONPs significantly improves coulombic efficiency (CE), capacity retention (CR), and the solid-electrolyte-interphase (SEI) properties. Cells with 1% In 2 O 3 or 1% ZnO addition resulted in 99.6% and 99.2% CE, and CR of 70% within 46 and 39 cycles, respectively. Combination of these MONPs resulted in 99.9% CE.
doi_str_mv 10.1007/s10008-022-05163-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2702497263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2702497263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-2e51ce9e24118d89721074dc1ad9ba9ed8f745077bb80a0939919cad43879a3e3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdTSPmUmylFK1UNCFrkMmuVNTOpmaTBf996aO4M7NfcB3zoGD0C2j94xS-ZDLpIpQzgmtWSNIfYZmrBKCUNmo85-bE1UpdYmuct5SymTD6Ay5Zfy00YW4wXtI3ZD68gEeOmzj4IF0CQCvA-lhtDvc2nGEFCDj9oit92EMQzzBDpLtg8OxqPY2jcHtCvRWLrxaXaOLzu4y3PzuOfp4Wr4vXsj69Xm1eFwTxys9Eg41c6CBV4wpr7TkjMrKO2a9bq0GrzpZ1VTKtlXUUi20ZtpZXwkltRUg5uhu8t2n4esAeTTb4ZBiiTRc0pIheSMKxSfKpSHnBJ3Zp9DbdDSMmlOZZirTlDLNT5mmLiIxiXKB4wbSn_U_qm96KXcD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2702497263</pqid></control><display><type>article</type><title>Enhancing performance of anode-free Li-metal batteries by addition of ceramic nanoparticles Part II</title><source>SpringerLink Journals - AutoHoldings</source><creator>Marrache, Roy ; Mukra, Tzach ; Shekhter, Pini ; Peled, Emanuel</creator><creatorcontrib>Marrache, Roy ; Mukra, Tzach ; Shekhter, Pini ; Peled, Emanuel</creatorcontrib><description>Because of their higher energy density, compared to lithium-ion batteries, rechargeable lithium-metal batteries (LMBs) have been considered one of the most attractive next-generation energy-storage systems (ESS). A promising approach to improving LMB performance, which has gained interest in recent years, is the use of anode-free lithium-metal batteries (AFLMBs). Such battery configuration enables elimination of the problem of using excessive amounts of lithium in LMBs, hence increasing the specific energy of the battery. Another approach is to use a solid-state electrolyte (SSE) which increases energy density and decreases safety concerns. This work explores the beneficial effects of integrating metal-oxide nanoparticles (MONPs) into the liquid electrolyte of AFLMB. It was found that the addition to the electrolyte of low concentrations of MONPs significantly improves coulombic efficiency (CE), capacity retention (CR), and the solid-electrolyte-interphase (SEI) properties. Cells with 1% In 2 O 3 or 1% ZnO addition resulted in 99.6% and 99.2% CE, and CR of 70% within 46 and 39 cycles, respectively. Combination of these MONPs resulted in 99.9% CE.</description><identifier>ISSN: 1432-8488</identifier><identifier>EISSN: 1433-0768</identifier><identifier>DOI: 10.1007/s10008-022-05163-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Anodes ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrochemistry ; Electrolytes ; Electrolytic cells ; Energy Storage ; Indium oxides ; Lithium ; Lithium batteries ; Lithium-ion batteries ; Low concentrations ; Metal oxides ; Nanoparticles ; Original Paper ; Performance enhancement ; Physical Chemistry ; Rechargeable batteries ; Specific energy ; Storage systems ; Zinc oxide</subject><ispartof>Journal of solid state electrochemistry, 2022-09, Vol.26 (9), p.2027-2038</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. corrected publication 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-2e51ce9e24118d89721074dc1ad9ba9ed8f745077bb80a0939919cad43879a3e3</citedby><cites>FETCH-LOGICAL-c249t-2e51ce9e24118d89721074dc1ad9ba9ed8f745077bb80a0939919cad43879a3e3</cites><orcidid>0000-0001-6949-553X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10008-022-05163-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10008-022-05163-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Marrache, Roy</creatorcontrib><creatorcontrib>Mukra, Tzach</creatorcontrib><creatorcontrib>Shekhter, Pini</creatorcontrib><creatorcontrib>Peled, Emanuel</creatorcontrib><title>Enhancing performance of anode-free Li-metal batteries by addition of ceramic nanoparticles Part II</title><title>Journal of solid state electrochemistry</title><addtitle>J Solid State Electrochem</addtitle><description>Because of their higher energy density, compared to lithium-ion batteries, rechargeable lithium-metal batteries (LMBs) have been considered one of the most attractive next-generation energy-storage systems (ESS). A promising approach to improving LMB performance, which has gained interest in recent years, is the use of anode-free lithium-metal batteries (AFLMBs). Such battery configuration enables elimination of the problem of using excessive amounts of lithium in LMBs, hence increasing the specific energy of the battery. Another approach is to use a solid-state electrolyte (SSE) which increases energy density and decreases safety concerns. This work explores the beneficial effects of integrating metal-oxide nanoparticles (MONPs) into the liquid electrolyte of AFLMB. It was found that the addition to the electrolyte of low concentrations of MONPs significantly improves coulombic efficiency (CE), capacity retention (CR), and the solid-electrolyte-interphase (SEI) properties. Cells with 1% In 2 O 3 or 1% ZnO addition resulted in 99.6% and 99.2% CE, and CR of 70% within 46 and 39 cycles, respectively. Combination of these MONPs resulted in 99.9% CE.</description><subject>Analytical Chemistry</subject><subject>Anodes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Energy Storage</subject><subject>Indium oxides</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>Low concentrations</subject><subject>Metal oxides</subject><subject>Nanoparticles</subject><subject>Original Paper</subject><subject>Performance enhancement</subject><subject>Physical Chemistry</subject><subject>Rechargeable batteries</subject><subject>Specific energy</subject><subject>Storage systems</subject><subject>Zinc oxide</subject><issn>1432-8488</issn><issn>1433-0768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdTSPmUmylFK1UNCFrkMmuVNTOpmaTBf996aO4M7NfcB3zoGD0C2j94xS-ZDLpIpQzgmtWSNIfYZmrBKCUNmo85-bE1UpdYmuct5SymTD6Ay5Zfy00YW4wXtI3ZD68gEeOmzj4IF0CQCvA-lhtDvc2nGEFCDj9oit92EMQzzBDpLtg8OxqPY2jcHtCvRWLrxaXaOLzu4y3PzuOfp4Wr4vXsj69Xm1eFwTxys9Eg41c6CBV4wpr7TkjMrKO2a9bq0GrzpZ1VTKtlXUUi20ZtpZXwkltRUg5uhu8t2n4esAeTTb4ZBiiTRc0pIheSMKxSfKpSHnBJ3Zp9DbdDSMmlOZZirTlDLNT5mmLiIxiXKB4wbSn_U_qm96KXcD</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Marrache, Roy</creator><creator>Mukra, Tzach</creator><creator>Shekhter, Pini</creator><creator>Peled, Emanuel</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6949-553X</orcidid></search><sort><creationdate>20220901</creationdate><title>Enhancing performance of anode-free Li-metal batteries by addition of ceramic nanoparticles Part II</title><author>Marrache, Roy ; Mukra, Tzach ; Shekhter, Pini ; Peled, Emanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-2e51ce9e24118d89721074dc1ad9ba9ed8f745077bb80a0939919cad43879a3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical Chemistry</topic><topic>Anodes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Energy Storage</topic><topic>Indium oxides</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>Low concentrations</topic><topic>Metal oxides</topic><topic>Nanoparticles</topic><topic>Original Paper</topic><topic>Performance enhancement</topic><topic>Physical Chemistry</topic><topic>Rechargeable batteries</topic><topic>Specific energy</topic><topic>Storage systems</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marrache, Roy</creatorcontrib><creatorcontrib>Mukra, Tzach</creatorcontrib><creatorcontrib>Shekhter, Pini</creatorcontrib><creatorcontrib>Peled, Emanuel</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of solid state electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marrache, Roy</au><au>Mukra, Tzach</au><au>Shekhter, Pini</au><au>Peled, Emanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing performance of anode-free Li-metal batteries by addition of ceramic nanoparticles Part II</atitle><jtitle>Journal of solid state electrochemistry</jtitle><stitle>J Solid State Electrochem</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>26</volume><issue>9</issue><spage>2027</spage><epage>2038</epage><pages>2027-2038</pages><issn>1432-8488</issn><eissn>1433-0768</eissn><abstract>Because of their higher energy density, compared to lithium-ion batteries, rechargeable lithium-metal batteries (LMBs) have been considered one of the most attractive next-generation energy-storage systems (ESS). A promising approach to improving LMB performance, which has gained interest in recent years, is the use of anode-free lithium-metal batteries (AFLMBs). Such battery configuration enables elimination of the problem of using excessive amounts of lithium in LMBs, hence increasing the specific energy of the battery. Another approach is to use a solid-state electrolyte (SSE) which increases energy density and decreases safety concerns. This work explores the beneficial effects of integrating metal-oxide nanoparticles (MONPs) into the liquid electrolyte of AFLMB. It was found that the addition to the electrolyte of low concentrations of MONPs significantly improves coulombic efficiency (CE), capacity retention (CR), and the solid-electrolyte-interphase (SEI) properties. Cells with 1% In 2 O 3 or 1% ZnO addition resulted in 99.6% and 99.2% CE, and CR of 70% within 46 and 39 cycles, respectively. Combination of these MONPs resulted in 99.9% CE.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10008-022-05163-5</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6949-553X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1432-8488
ispartof Journal of solid state electrochemistry, 2022-09, Vol.26 (9), p.2027-2038
issn 1432-8488
1433-0768
language eng
recordid cdi_proquest_journals_2702497263
source SpringerLink Journals - AutoHoldings
subjects Analytical Chemistry
Anodes
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Electrochemistry
Electrolytes
Electrolytic cells
Energy Storage
Indium oxides
Lithium
Lithium batteries
Lithium-ion batteries
Low concentrations
Metal oxides
Nanoparticles
Original Paper
Performance enhancement
Physical Chemistry
Rechargeable batteries
Specific energy
Storage systems
Zinc oxide
title Enhancing performance of anode-free Li-metal batteries by addition of ceramic nanoparticles Part II
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A31%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20performance%20of%20anode-free%20Li-metal%20batteries%20by%20addition%20of%20ceramic%20nanoparticles%20Part%20II&rft.jtitle=Journal%20of%20solid%20state%20electrochemistry&rft.au=Marrache,%20Roy&rft.date=2022-09-01&rft.volume=26&rft.issue=9&rft.spage=2027&rft.epage=2038&rft.pages=2027-2038&rft.issn=1432-8488&rft.eissn=1433-0768&rft_id=info:doi/10.1007/s10008-022-05163-5&rft_dat=%3Cproquest_cross%3E2702497263%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2702497263&rft_id=info:pmid/&rfr_iscdi=true