Direct conversion of glycerol to n -propanol over a tandem catalytic dehydration–hydrogenation system

The direct dehydration–hydrogenation of glycerol to n -propanol over a tandem catalytic system containing HZSM-5 (Si/Al ∼13) and supported Ni catalysts was studied under atmospheric H 2 . Complete glycerol conversion to acrolein and propionaldehyde (>82% selectivity) was optimized for dehydration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis science & technology 2022-08, Vol.12 (16), p.5053-5066
Hauptverfasser: Solos, Thanasak, Methiritthikul, Napanot, Homla-or, Chanakran, Duangchan, Preedawan, Choojun, Kittisak, Sooknoi, Tawan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5066
container_issue 16
container_start_page 5053
container_title Catalysis science & technology
container_volume 12
creator Solos, Thanasak
Methiritthikul, Napanot
Homla-or, Chanakran
Duangchan, Preedawan
Choojun, Kittisak
Sooknoi, Tawan
description The direct dehydration–hydrogenation of glycerol to n -propanol over a tandem catalytic system containing HZSM-5 (Si/Al ∼13) and supported Ni catalysts was studied under atmospheric H 2 . Complete glycerol conversion to acrolein and propionaldehyde (>82% selectivity) was optimized for dehydration in the first bed (HZSM-5) at 300 °C. Ni/MgO, Ni/SiO 2 , Ni/Mg–Al-LDH, Ni/TiO 2 , and Ni/Al 2 O 3 (20 wt% Ni loading) were used as hydrogenation catalysts in the second bed at 175 °C. Without the interference of glycerol from the first bed, the acrolein and propionaldehyde produced were hydrogenated to n -propanol (∼90% selectivity). Nevertheless, propanoic acid was observed as a minor product from water reduction by propionaldehyde. The cause of deactivation was investigated for the second beds (Ni/SiO 2 ), where the formation of high MW products was evidenced. While the catalysts can be simply regenerated by calcining in air at 450 °C, HZSM-5¦20Ni/Al 2 O 3 with high Ni dispersion provides a higher stability and n -propanol yield (>73%) compared to other tandem catalysts.
doi_str_mv 10.1039/D2CY00671E
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2702494133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2702494133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c189t-769031f7f3619da58dae305d830877291ff7e7119b7844c0bca41279177e05b73</originalsourceid><addsrcrecordid>eNpFkM1KAzEUhYMoWGo3PkHAnTCam2Qmk6W09QcKbnThakgzSZ0yTWqSCrPzHXxDn8TUit7NPQe--8NB6BzIFRAmr2d0-kJIJWB-hEaUcF5wUcHxny7ZKZrEuCa5uARS0xFazbpgdMLau3cTYucd9hav-kGb4HucPHa42Aa_VS5bnxmscFKuNRusVVL9kDqNW_M6tEGlPP718bnXfmXcj8dxiMlsztCJVX00k98-Rs-386fpfbF4vHuY3iwKDbVMhagkYWCFZRXIVpV1qwwjZVszUgtBJVgrjACQS1FzrslSKw5USBDCkHIp2BhdHPbmn992JqZm7XfB5ZMNFYRyyYGxTF0eKB18jMHYZhu6jQpDA6TZZ9n8Z8m-AfOwZ20</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2702494133</pqid></control><display><type>article</type><title>Direct conversion of glycerol to n -propanol over a tandem catalytic dehydration–hydrogenation system</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Solos, Thanasak ; Methiritthikul, Napanot ; Homla-or, Chanakran ; Duangchan, Preedawan ; Choojun, Kittisak ; Sooknoi, Tawan</creator><creatorcontrib>Solos, Thanasak ; Methiritthikul, Napanot ; Homla-or, Chanakran ; Duangchan, Preedawan ; Choojun, Kittisak ; Sooknoi, Tawan</creatorcontrib><description>The direct dehydration–hydrogenation of glycerol to n -propanol over a tandem catalytic system containing HZSM-5 (Si/Al ∼13) and supported Ni catalysts was studied under atmospheric H 2 . Complete glycerol conversion to acrolein and propionaldehyde (&gt;82% selectivity) was optimized for dehydration in the first bed (HZSM-5) at 300 °C. Ni/MgO, Ni/SiO 2 , Ni/Mg–Al-LDH, Ni/TiO 2 , and Ni/Al 2 O 3 (20 wt% Ni loading) were used as hydrogenation catalysts in the second bed at 175 °C. Without the interference of glycerol from the first bed, the acrolein and propionaldehyde produced were hydrogenated to n -propanol (∼90% selectivity). Nevertheless, propanoic acid was observed as a minor product from water reduction by propionaldehyde. The cause of deactivation was investigated for the second beds (Ni/SiO 2 ), where the formation of high MW products was evidenced. While the catalysts can be simply regenerated by calcining in air at 450 °C, HZSM-5¦20Ni/Al 2 O 3 with high Ni dispersion provides a higher stability and n -propanol yield (&gt;73%) compared to other tandem catalysts.</description><identifier>ISSN: 2044-4753</identifier><identifier>EISSN: 2044-4761</identifier><identifier>DOI: 10.1039/D2CY00671E</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aluminum oxide ; Catalysts ; Catalytic converters ; Dehydration ; Direct conversion ; Glycerol ; Hydrogenation ; Magnesium ; Nickel ; Propionic acid ; Selectivity ; Silicon dioxide ; Titanium dioxide</subject><ispartof>Catalysis science &amp; technology, 2022-08, Vol.12 (16), p.5053-5066</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c189t-769031f7f3619da58dae305d830877291ff7e7119b7844c0bca41279177e05b73</citedby><cites>FETCH-LOGICAL-c189t-769031f7f3619da58dae305d830877291ff7e7119b7844c0bca41279177e05b73</cites><orcidid>0000-0002-3874-0384</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Solos, Thanasak</creatorcontrib><creatorcontrib>Methiritthikul, Napanot</creatorcontrib><creatorcontrib>Homla-or, Chanakran</creatorcontrib><creatorcontrib>Duangchan, Preedawan</creatorcontrib><creatorcontrib>Choojun, Kittisak</creatorcontrib><creatorcontrib>Sooknoi, Tawan</creatorcontrib><title>Direct conversion of glycerol to n -propanol over a tandem catalytic dehydration–hydrogenation system</title><title>Catalysis science &amp; technology</title><description>The direct dehydration–hydrogenation of glycerol to n -propanol over a tandem catalytic system containing HZSM-5 (Si/Al ∼13) and supported Ni catalysts was studied under atmospheric H 2 . Complete glycerol conversion to acrolein and propionaldehyde (&gt;82% selectivity) was optimized for dehydration in the first bed (HZSM-5) at 300 °C. Ni/MgO, Ni/SiO 2 , Ni/Mg–Al-LDH, Ni/TiO 2 , and Ni/Al 2 O 3 (20 wt% Ni loading) were used as hydrogenation catalysts in the second bed at 175 °C. Without the interference of glycerol from the first bed, the acrolein and propionaldehyde produced were hydrogenated to n -propanol (∼90% selectivity). Nevertheless, propanoic acid was observed as a minor product from water reduction by propionaldehyde. The cause of deactivation was investigated for the second beds (Ni/SiO 2 ), where the formation of high MW products was evidenced. While the catalysts can be simply regenerated by calcining in air at 450 °C, HZSM-5¦20Ni/Al 2 O 3 with high Ni dispersion provides a higher stability and n -propanol yield (&gt;73%) compared to other tandem catalysts.</description><subject>Aluminum oxide</subject><subject>Catalysts</subject><subject>Catalytic converters</subject><subject>Dehydration</subject><subject>Direct conversion</subject><subject>Glycerol</subject><subject>Hydrogenation</subject><subject>Magnesium</subject><subject>Nickel</subject><subject>Propionic acid</subject><subject>Selectivity</subject><subject>Silicon dioxide</subject><subject>Titanium dioxide</subject><issn>2044-4753</issn><issn>2044-4761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkM1KAzEUhYMoWGo3PkHAnTCam2Qmk6W09QcKbnThakgzSZ0yTWqSCrPzHXxDn8TUit7NPQe--8NB6BzIFRAmr2d0-kJIJWB-hEaUcF5wUcHxny7ZKZrEuCa5uARS0xFazbpgdMLau3cTYucd9hav-kGb4HucPHa42Aa_VS5bnxmscFKuNRusVVL9kDqNW_M6tEGlPP718bnXfmXcj8dxiMlsztCJVX00k98-Rs-386fpfbF4vHuY3iwKDbVMhagkYWCFZRXIVpV1qwwjZVszUgtBJVgrjACQS1FzrslSKw5USBDCkHIp2BhdHPbmn992JqZm7XfB5ZMNFYRyyYGxTF0eKB18jMHYZhu6jQpDA6TZZ9n8Z8m-AfOwZ20</recordid><startdate>20220816</startdate><enddate>20220816</enddate><creator>Solos, Thanasak</creator><creator>Methiritthikul, Napanot</creator><creator>Homla-or, Chanakran</creator><creator>Duangchan, Preedawan</creator><creator>Choojun, Kittisak</creator><creator>Sooknoi, Tawan</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-3874-0384</orcidid></search><sort><creationdate>20220816</creationdate><title>Direct conversion of glycerol to n -propanol over a tandem catalytic dehydration–hydrogenation system</title><author>Solos, Thanasak ; Methiritthikul, Napanot ; Homla-or, Chanakran ; Duangchan, Preedawan ; Choojun, Kittisak ; Sooknoi, Tawan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c189t-769031f7f3619da58dae305d830877291ff7e7119b7844c0bca41279177e05b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum oxide</topic><topic>Catalysts</topic><topic>Catalytic converters</topic><topic>Dehydration</topic><topic>Direct conversion</topic><topic>Glycerol</topic><topic>Hydrogenation</topic><topic>Magnesium</topic><topic>Nickel</topic><topic>Propionic acid</topic><topic>Selectivity</topic><topic>Silicon dioxide</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solos, Thanasak</creatorcontrib><creatorcontrib>Methiritthikul, Napanot</creatorcontrib><creatorcontrib>Homla-or, Chanakran</creatorcontrib><creatorcontrib>Duangchan, Preedawan</creatorcontrib><creatorcontrib>Choojun, Kittisak</creatorcontrib><creatorcontrib>Sooknoi, Tawan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Catalysis science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solos, Thanasak</au><au>Methiritthikul, Napanot</au><au>Homla-or, Chanakran</au><au>Duangchan, Preedawan</au><au>Choojun, Kittisak</au><au>Sooknoi, Tawan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct conversion of glycerol to n -propanol over a tandem catalytic dehydration–hydrogenation system</atitle><jtitle>Catalysis science &amp; technology</jtitle><date>2022-08-16</date><risdate>2022</risdate><volume>12</volume><issue>16</issue><spage>5053</spage><epage>5066</epage><pages>5053-5066</pages><issn>2044-4753</issn><eissn>2044-4761</eissn><abstract>The direct dehydration–hydrogenation of glycerol to n -propanol over a tandem catalytic system containing HZSM-5 (Si/Al ∼13) and supported Ni catalysts was studied under atmospheric H 2 . Complete glycerol conversion to acrolein and propionaldehyde (&gt;82% selectivity) was optimized for dehydration in the first bed (HZSM-5) at 300 °C. Ni/MgO, Ni/SiO 2 , Ni/Mg–Al-LDH, Ni/TiO 2 , and Ni/Al 2 O 3 (20 wt% Ni loading) were used as hydrogenation catalysts in the second bed at 175 °C. Without the interference of glycerol from the first bed, the acrolein and propionaldehyde produced were hydrogenated to n -propanol (∼90% selectivity). Nevertheless, propanoic acid was observed as a minor product from water reduction by propionaldehyde. The cause of deactivation was investigated for the second beds (Ni/SiO 2 ), where the formation of high MW products was evidenced. While the catalysts can be simply regenerated by calcining in air at 450 °C, HZSM-5¦20Ni/Al 2 O 3 with high Ni dispersion provides a higher stability and n -propanol yield (&gt;73%) compared to other tandem catalysts.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D2CY00671E</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3874-0384</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2044-4753
ispartof Catalysis science & technology, 2022-08, Vol.12 (16), p.5053-5066
issn 2044-4753
2044-4761
language eng
recordid cdi_proquest_journals_2702494133
source Royal Society Of Chemistry Journals 2008-
subjects Aluminum oxide
Catalysts
Catalytic converters
Dehydration
Direct conversion
Glycerol
Hydrogenation
Magnesium
Nickel
Propionic acid
Selectivity
Silicon dioxide
Titanium dioxide
title Direct conversion of glycerol to n -propanol over a tandem catalytic dehydration–hydrogenation system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A49%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20conversion%20of%20glycerol%20to%20n%20-propanol%20over%20a%20tandem%20catalytic%20dehydration%E2%80%93hydrogenation%20system&rft.jtitle=Catalysis%20science%20&%20technology&rft.au=Solos,%20Thanasak&rft.date=2022-08-16&rft.volume=12&rft.issue=16&rft.spage=5053&rft.epage=5066&rft.pages=5053-5066&rft.issn=2044-4753&rft.eissn=2044-4761&rft_id=info:doi/10.1039/D2CY00671E&rft_dat=%3Cproquest_cross%3E2702494133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2702494133&rft_id=info:pmid/&rfr_iscdi=true