Self‐assembly Behavior of Metal Halide Perovskite Nanocrystals
Comprehensive Summary The self‐assembled metal halide perovskite (MHP) nanocrystal superlattices have attracted many researchers due to their exceptional optical and electrical properties. The bottom‐up self‐assembly can be facile to generate ideal and periodic structures. The superlattices’ stabili...
Gespeichert in:
Veröffentlicht in: | Chinese journal of chemistry 2022-09, Vol.40 (18), p.2239-2248 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2248 |
---|---|
container_issue | 18 |
container_start_page | 2239 |
container_title | Chinese journal of chemistry |
container_volume | 40 |
creator | Yang, Zhuoying Peng, Shaomin Lin, Fan Wang, Pengfei Xing, Guichuan Yu, Lin |
description | Comprehensive Summary
The self‐assembled metal halide perovskite (MHP) nanocrystal superlattices have attracted many researchers due to their exceptional optical and electrical properties. The bottom‐up self‐assembly can be facile to generate ideal and periodic structures. The superlattices’ stability can be improved and the photoluminescence lifetime can be extended by an order of magnitude. However, due to lack of a comprehensive and systematic understanding of the internal interactions on self‐assembled processes now, superlattices cannot be obtained controllably and play full use of their advantages. Therefore, gaining a deep insight of interaction forces about self‐assemblies is the premise of designing and controlling the degree of self‐assembly so as to prepare ideal materials. In this review, the definitions and functions of driving forces including van der Waals forces, electrostatic interactions and hydrogen bonds are discussed. Subsequently, we aim to explore the dominant factors affecting the driving forces, which can make a difference in the process of MHP self‐assembly. Based on current researches, we emphasize on three aspects−the core of nanocrystals, surface ligands and solvents−to clarify their critical roles in controlling the driving forces. Finally, the outlooks and perspectives of how to facilitate the MHP self‐assembly and their application on blue light emitting diodes are discussed.
Compared with top‐down strategies, the bottom‐up self‐assembly offers a facile and time‐saving technique to create micrometer‐scale to macroscale structures. We emphasize on three aspects−the core of nanocrystals, surface ligands and solvents−to clarify their critical roles in controlling the driving forces during the process of self‐assembled metal halide perovskite due to lack of comprehension on them at present. |
doi_str_mv | 10.1002/cjoc.202200161 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2702099134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2702099134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3171-861ce07501d86b06ceb1cd702619a9bf1649db77bb8756fc46d8dbc3cb4435bb3</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqWwMkdiTjg7jp1sQEQpqFAkQGKzbMcRKWld7LYoG4_AM_IkuAqCkeXudPf9_0k_QscYEgxATvXM6oQAIQCY4R00CJXGHFi2G-awjBnQ53104P0s8JwTNkBnD6atvz4-pfdmrtouujAvctNYF9k6ujUr2UZj2TaVie6Nsxv_2qxMdCcXVrvOh6s_RHt1aObopw_R0-jysRzHk-nVdXk-iXWKOY5zhrUBngGucqaAaaOwrjgQhgtZqBozWlSKc6VynrFaU1blldKpVpSmmVLpEJ30vktn39bGr8TMrt0ivBQk2EBR4JQGKukp7az3ztRi6Zq5dJ3AILYpiW1K4jelICh6wXvTmu4fWpQ30_JP-w169WwY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2702099134</pqid></control><display><type>article</type><title>Self‐assembly Behavior of Metal Halide Perovskite Nanocrystals</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Zhuoying ; Peng, Shaomin ; Lin, Fan ; Wang, Pengfei ; Xing, Guichuan ; Yu, Lin</creator><creatorcontrib>Yang, Zhuoying ; Peng, Shaomin ; Lin, Fan ; Wang, Pengfei ; Xing, Guichuan ; Yu, Lin</creatorcontrib><description>Comprehensive Summary
The self‐assembled metal halide perovskite (MHP) nanocrystal superlattices have attracted many researchers due to their exceptional optical and electrical properties. The bottom‐up self‐assembly can be facile to generate ideal and periodic structures. The superlattices’ stability can be improved and the photoluminescence lifetime can be extended by an order of magnitude. However, due to lack of a comprehensive and systematic understanding of the internal interactions on self‐assembled processes now, superlattices cannot be obtained controllably and play full use of their advantages. Therefore, gaining a deep insight of interaction forces about self‐assemblies is the premise of designing and controlling the degree of self‐assembly so as to prepare ideal materials. In this review, the definitions and functions of driving forces including van der Waals forces, electrostatic interactions and hydrogen bonds are discussed. Subsequently, we aim to explore the dominant factors affecting the driving forces, which can make a difference in the process of MHP self‐assembly. Based on current researches, we emphasize on three aspects−the core of nanocrystals, surface ligands and solvents−to clarify their critical roles in controlling the driving forces. Finally, the outlooks and perspectives of how to facilitate the MHP self‐assembly and their application on blue light emitting diodes are discussed.
Compared with top‐down strategies, the bottom‐up self‐assembly offers a facile and time‐saving technique to create micrometer‐scale to macroscale structures. We emphasize on three aspects−the core of nanocrystals, surface ligands and solvents−to clarify their critical roles in controlling the driving forces during the process of self‐assembled metal halide perovskite due to lack of comprehension on them at present.</description><identifier>ISSN: 1001-604X</identifier><identifier>EISSN: 1614-7065</identifier><identifier>DOI: 10.1002/cjoc.202200161</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag GmbH & Co. KGaA</publisher><subject>Assembly ; Crystals ; Electrical properties ; Electrostatic properties ; Hydrogen bonding ; Hydrogen bonds ; Light emitting diodes ; Metal halide perovskite ; Metal halides ; Nanocrystals ; Nanostructures ; Optical properties ; Periodic structures ; Perovskites ; Photoluminescence ; Photons ; Self‐assembly ; Solvent effects ; Superlattices ; Surface ligand ; Van der Waals forces</subject><ispartof>Chinese journal of chemistry, 2022-09, Vol.40 (18), p.2239-2248</ispartof><rights>2022 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH.</rights><rights>2022 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3171-861ce07501d86b06ceb1cd702619a9bf1649db77bb8756fc46d8dbc3cb4435bb3</citedby><cites>FETCH-LOGICAL-c3171-861ce07501d86b06ceb1cd702619a9bf1649db77bb8756fc46d8dbc3cb4435bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcjoc.202200161$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcjoc.202200161$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Yang, Zhuoying</creatorcontrib><creatorcontrib>Peng, Shaomin</creatorcontrib><creatorcontrib>Lin, Fan</creatorcontrib><creatorcontrib>Wang, Pengfei</creatorcontrib><creatorcontrib>Xing, Guichuan</creatorcontrib><creatorcontrib>Yu, Lin</creatorcontrib><title>Self‐assembly Behavior of Metal Halide Perovskite Nanocrystals</title><title>Chinese journal of chemistry</title><description>Comprehensive Summary
The self‐assembled metal halide perovskite (MHP) nanocrystal superlattices have attracted many researchers due to their exceptional optical and electrical properties. The bottom‐up self‐assembly can be facile to generate ideal and periodic structures. The superlattices’ stability can be improved and the photoluminescence lifetime can be extended by an order of magnitude. However, due to lack of a comprehensive and systematic understanding of the internal interactions on self‐assembled processes now, superlattices cannot be obtained controllably and play full use of their advantages. Therefore, gaining a deep insight of interaction forces about self‐assemblies is the premise of designing and controlling the degree of self‐assembly so as to prepare ideal materials. In this review, the definitions and functions of driving forces including van der Waals forces, electrostatic interactions and hydrogen bonds are discussed. Subsequently, we aim to explore the dominant factors affecting the driving forces, which can make a difference in the process of MHP self‐assembly. Based on current researches, we emphasize on three aspects−the core of nanocrystals, surface ligands and solvents−to clarify their critical roles in controlling the driving forces. Finally, the outlooks and perspectives of how to facilitate the MHP self‐assembly and their application on blue light emitting diodes are discussed.
Compared with top‐down strategies, the bottom‐up self‐assembly offers a facile and time‐saving technique to create micrometer‐scale to macroscale structures. We emphasize on three aspects−the core of nanocrystals, surface ligands and solvents−to clarify their critical roles in controlling the driving forces during the process of self‐assembled metal halide perovskite due to lack of comprehension on them at present.</description><subject>Assembly</subject><subject>Crystals</subject><subject>Electrical properties</subject><subject>Electrostatic properties</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Light emitting diodes</subject><subject>Metal halide perovskite</subject><subject>Metal halides</subject><subject>Nanocrystals</subject><subject>Nanostructures</subject><subject>Optical properties</subject><subject>Periodic structures</subject><subject>Perovskites</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Self‐assembly</subject><subject>Solvent effects</subject><subject>Superlattices</subject><subject>Surface ligand</subject><subject>Van der Waals forces</subject><issn>1001-604X</issn><issn>1614-7065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EEqWwMkdiTjg7jp1sQEQpqFAkQGKzbMcRKWld7LYoG4_AM_IkuAqCkeXudPf9_0k_QscYEgxATvXM6oQAIQCY4R00CJXGHFi2G-awjBnQ53104P0s8JwTNkBnD6atvz4-pfdmrtouujAvctNYF9k6ujUr2UZj2TaVie6Nsxv_2qxMdCcXVrvOh6s_RHt1aObopw_R0-jysRzHk-nVdXk-iXWKOY5zhrUBngGucqaAaaOwrjgQhgtZqBozWlSKc6VynrFaU1blldKpVpSmmVLpEJ30vktn39bGr8TMrt0ivBQk2EBR4JQGKukp7az3ztRi6Zq5dJ3AILYpiW1K4jelICh6wXvTmu4fWpQ30_JP-w169WwY</recordid><startdate>20220915</startdate><enddate>20220915</enddate><creator>Yang, Zhuoying</creator><creator>Peng, Shaomin</creator><creator>Lin, Fan</creator><creator>Wang, Pengfei</creator><creator>Xing, Guichuan</creator><creator>Yu, Lin</creator><general>WILEY‐VCH Verlag GmbH & Co. KGaA</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220915</creationdate><title>Self‐assembly Behavior of Metal Halide Perovskite Nanocrystals</title><author>Yang, Zhuoying ; Peng, Shaomin ; Lin, Fan ; Wang, Pengfei ; Xing, Guichuan ; Yu, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3171-861ce07501d86b06ceb1cd702619a9bf1649db77bb8756fc46d8dbc3cb4435bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Assembly</topic><topic>Crystals</topic><topic>Electrical properties</topic><topic>Electrostatic properties</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Light emitting diodes</topic><topic>Metal halide perovskite</topic><topic>Metal halides</topic><topic>Nanocrystals</topic><topic>Nanostructures</topic><topic>Optical properties</topic><topic>Periodic structures</topic><topic>Perovskites</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Self‐assembly</topic><topic>Solvent effects</topic><topic>Superlattices</topic><topic>Surface ligand</topic><topic>Van der Waals forces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Zhuoying</creatorcontrib><creatorcontrib>Peng, Shaomin</creatorcontrib><creatorcontrib>Lin, Fan</creatorcontrib><creatorcontrib>Wang, Pengfei</creatorcontrib><creatorcontrib>Xing, Guichuan</creatorcontrib><creatorcontrib>Yu, Lin</creatorcontrib><collection>CrossRef</collection><jtitle>Chinese journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Zhuoying</au><au>Peng, Shaomin</au><au>Lin, Fan</au><au>Wang, Pengfei</au><au>Xing, Guichuan</au><au>Yu, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐assembly Behavior of Metal Halide Perovskite Nanocrystals</atitle><jtitle>Chinese journal of chemistry</jtitle><date>2022-09-15</date><risdate>2022</risdate><volume>40</volume><issue>18</issue><spage>2239</spage><epage>2248</epage><pages>2239-2248</pages><issn>1001-604X</issn><eissn>1614-7065</eissn><abstract>Comprehensive Summary
The self‐assembled metal halide perovskite (MHP) nanocrystal superlattices have attracted many researchers due to their exceptional optical and electrical properties. The bottom‐up self‐assembly can be facile to generate ideal and periodic structures. The superlattices’ stability can be improved and the photoluminescence lifetime can be extended by an order of magnitude. However, due to lack of a comprehensive and systematic understanding of the internal interactions on self‐assembled processes now, superlattices cannot be obtained controllably and play full use of their advantages. Therefore, gaining a deep insight of interaction forces about self‐assemblies is the premise of designing and controlling the degree of self‐assembly so as to prepare ideal materials. In this review, the definitions and functions of driving forces including van der Waals forces, electrostatic interactions and hydrogen bonds are discussed. Subsequently, we aim to explore the dominant factors affecting the driving forces, which can make a difference in the process of MHP self‐assembly. Based on current researches, we emphasize on three aspects−the core of nanocrystals, surface ligands and solvents−to clarify their critical roles in controlling the driving forces. Finally, the outlooks and perspectives of how to facilitate the MHP self‐assembly and their application on blue light emitting diodes are discussed.
Compared with top‐down strategies, the bottom‐up self‐assembly offers a facile and time‐saving technique to create micrometer‐scale to macroscale structures. We emphasize on three aspects−the core of nanocrystals, surface ligands and solvents−to clarify their critical roles in controlling the driving forces during the process of self‐assembled metal halide perovskite due to lack of comprehension on them at present.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag GmbH & Co. KGaA</pub><doi>10.1002/cjoc.202200161</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-604X |
ispartof | Chinese journal of chemistry, 2022-09, Vol.40 (18), p.2239-2248 |
issn | 1001-604X 1614-7065 |
language | eng |
recordid | cdi_proquest_journals_2702099134 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Assembly Crystals Electrical properties Electrostatic properties Hydrogen bonding Hydrogen bonds Light emitting diodes Metal halide perovskite Metal halides Nanocrystals Nanostructures Optical properties Periodic structures Perovskites Photoluminescence Photons Self‐assembly Solvent effects Superlattices Surface ligand Van der Waals forces |
title | Self‐assembly Behavior of Metal Halide Perovskite Nanocrystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A16%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90assembly%20Behavior%20of%20Metal%20Halide%20Perovskite%20Nanocrystals&rft.jtitle=Chinese%20journal%20of%20chemistry&rft.au=Yang,%20Zhuoying&rft.date=2022-09-15&rft.volume=40&rft.issue=18&rft.spage=2239&rft.epage=2248&rft.pages=2239-2248&rft.issn=1001-604X&rft.eissn=1614-7065&rft_id=info:doi/10.1002/cjoc.202200161&rft_dat=%3Cproquest_cross%3E2702099134%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2702099134&rft_id=info:pmid/&rfr_iscdi=true |