Self‐assembly Behavior of Metal Halide Perovskite Nanocrystals

Comprehensive Summary The self‐assembled metal halide perovskite (MHP) nanocrystal superlattices have attracted many researchers due to their exceptional optical and electrical properties. The bottom‐up self‐assembly can be facile to generate ideal and periodic structures. The superlattices’ stabili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of chemistry 2022-09, Vol.40 (18), p.2239-2248
Hauptverfasser: Yang, Zhuoying, Peng, Shaomin, Lin, Fan, Wang, Pengfei, Xing, Guichuan, Yu, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2248
container_issue 18
container_start_page 2239
container_title Chinese journal of chemistry
container_volume 40
creator Yang, Zhuoying
Peng, Shaomin
Lin, Fan
Wang, Pengfei
Xing, Guichuan
Yu, Lin
description Comprehensive Summary The self‐assembled metal halide perovskite (MHP) nanocrystal superlattices have attracted many researchers due to their exceptional optical and electrical properties. The bottom‐up self‐assembly can be facile to generate ideal and periodic structures. The superlattices’ stability can be improved and the photoluminescence lifetime can be extended by an order of magnitude. However, due to lack of a comprehensive and systematic understanding of the internal interactions on self‐assembled processes now, superlattices cannot be obtained controllably and play full use of their advantages. Therefore, gaining a deep insight of interaction forces about self‐assemblies is the premise of designing and controlling the degree of self‐assembly so as to prepare ideal materials. In this review, the definitions and functions of driving forces including van der Waals forces, electrostatic interactions and hydrogen bonds are discussed. Subsequently, we aim to explore the dominant factors affecting the driving forces, which can make a difference in the process of MHP self‐assembly. Based on current researches, we emphasize on three aspects−the core of nanocrystals, surface ligands and solvents−to clarify their critical roles in controlling the driving forces. Finally, the outlooks and perspectives of how to facilitate the MHP self‐assembly and their application on blue light emitting diodes are discussed. Compared with top‐down strategies, the bottom‐up self‐assembly offers a facile and time‐saving technique to create micrometer‐scale to macroscale structures. We emphasize on three aspects−the core of nanocrystals, surface ligands and solvents−to clarify their critical roles in controlling the driving forces during the process of self‐assembled metal halide perovskite due to lack of comprehension on them at present.
doi_str_mv 10.1002/cjoc.202200161
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2702099134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2702099134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3171-861ce07501d86b06ceb1cd702619a9bf1649db77bb8756fc46d8dbc3cb4435bb3</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqWwMkdiTjg7jp1sQEQpqFAkQGKzbMcRKWld7LYoG4_AM_IkuAqCkeXudPf9_0k_QscYEgxATvXM6oQAIQCY4R00CJXGHFi2G-awjBnQ53104P0s8JwTNkBnD6atvz4-pfdmrtouujAvctNYF9k6ujUr2UZj2TaVie6Nsxv_2qxMdCcXVrvOh6s_RHt1aObopw_R0-jysRzHk-nVdXk-iXWKOY5zhrUBngGucqaAaaOwrjgQhgtZqBozWlSKc6VynrFaU1blldKpVpSmmVLpEJ30vktn39bGr8TMrt0ivBQk2EBR4JQGKukp7az3ztRi6Zq5dJ3AILYpiW1K4jelICh6wXvTmu4fWpQ30_JP-w169WwY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2702099134</pqid></control><display><type>article</type><title>Self‐assembly Behavior of Metal Halide Perovskite Nanocrystals</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Zhuoying ; Peng, Shaomin ; Lin, Fan ; Wang, Pengfei ; Xing, Guichuan ; Yu, Lin</creator><creatorcontrib>Yang, Zhuoying ; Peng, Shaomin ; Lin, Fan ; Wang, Pengfei ; Xing, Guichuan ; Yu, Lin</creatorcontrib><description>Comprehensive Summary The self‐assembled metal halide perovskite (MHP) nanocrystal superlattices have attracted many researchers due to their exceptional optical and electrical properties. The bottom‐up self‐assembly can be facile to generate ideal and periodic structures. The superlattices’ stability can be improved and the photoluminescence lifetime can be extended by an order of magnitude. However, due to lack of a comprehensive and systematic understanding of the internal interactions on self‐assembled processes now, superlattices cannot be obtained controllably and play full use of their advantages. Therefore, gaining a deep insight of interaction forces about self‐assemblies is the premise of designing and controlling the degree of self‐assembly so as to prepare ideal materials. In this review, the definitions and functions of driving forces including van der Waals forces, electrostatic interactions and hydrogen bonds are discussed. Subsequently, we aim to explore the dominant factors affecting the driving forces, which can make a difference in the process of MHP self‐assembly. Based on current researches, we emphasize on three aspects−the core of nanocrystals, surface ligands and solvents−to clarify their critical roles in controlling the driving forces. Finally, the outlooks and perspectives of how to facilitate the MHP self‐assembly and their application on blue light emitting diodes are discussed. Compared with top‐down strategies, the bottom‐up self‐assembly offers a facile and time‐saving technique to create micrometer‐scale to macroscale structures. We emphasize on three aspects−the core of nanocrystals, surface ligands and solvents−to clarify their critical roles in controlling the driving forces during the process of self‐assembled metal halide perovskite due to lack of comprehension on them at present.</description><identifier>ISSN: 1001-604X</identifier><identifier>EISSN: 1614-7065</identifier><identifier>DOI: 10.1002/cjoc.202200161</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>Assembly ; Crystals ; Electrical properties ; Electrostatic properties ; Hydrogen bonding ; Hydrogen bonds ; Light emitting diodes ; Metal halide perovskite ; Metal halides ; Nanocrystals ; Nanostructures ; Optical properties ; Periodic structures ; Perovskites ; Photoluminescence ; Photons ; Self‐assembly ; Solvent effects ; Superlattices ; Surface ligand ; Van der Waals forces</subject><ispartof>Chinese journal of chemistry, 2022-09, Vol.40 (18), p.2239-2248</ispartof><rights>2022 SIOC, CAS, Shanghai, &amp; WILEY‐VCH GmbH.</rights><rights>2022 SIOC, CAS, Shanghai, &amp; WILEY‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3171-861ce07501d86b06ceb1cd702619a9bf1649db77bb8756fc46d8dbc3cb4435bb3</citedby><cites>FETCH-LOGICAL-c3171-861ce07501d86b06ceb1cd702619a9bf1649db77bb8756fc46d8dbc3cb4435bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcjoc.202200161$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcjoc.202200161$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Yang, Zhuoying</creatorcontrib><creatorcontrib>Peng, Shaomin</creatorcontrib><creatorcontrib>Lin, Fan</creatorcontrib><creatorcontrib>Wang, Pengfei</creatorcontrib><creatorcontrib>Xing, Guichuan</creatorcontrib><creatorcontrib>Yu, Lin</creatorcontrib><title>Self‐assembly Behavior of Metal Halide Perovskite Nanocrystals</title><title>Chinese journal of chemistry</title><description>Comprehensive Summary The self‐assembled metal halide perovskite (MHP) nanocrystal superlattices have attracted many researchers due to their exceptional optical and electrical properties. The bottom‐up self‐assembly can be facile to generate ideal and periodic structures. The superlattices’ stability can be improved and the photoluminescence lifetime can be extended by an order of magnitude. However, due to lack of a comprehensive and systematic understanding of the internal interactions on self‐assembled processes now, superlattices cannot be obtained controllably and play full use of their advantages. Therefore, gaining a deep insight of interaction forces about self‐assemblies is the premise of designing and controlling the degree of self‐assembly so as to prepare ideal materials. In this review, the definitions and functions of driving forces including van der Waals forces, electrostatic interactions and hydrogen bonds are discussed. Subsequently, we aim to explore the dominant factors affecting the driving forces, which can make a difference in the process of MHP self‐assembly. Based on current researches, we emphasize on three aspects−the core of nanocrystals, surface ligands and solvents−to clarify their critical roles in controlling the driving forces. Finally, the outlooks and perspectives of how to facilitate the MHP self‐assembly and their application on blue light emitting diodes are discussed. Compared with top‐down strategies, the bottom‐up self‐assembly offers a facile and time‐saving technique to create micrometer‐scale to macroscale structures. We emphasize on three aspects−the core of nanocrystals, surface ligands and solvents−to clarify their critical roles in controlling the driving forces during the process of self‐assembled metal halide perovskite due to lack of comprehension on them at present.</description><subject>Assembly</subject><subject>Crystals</subject><subject>Electrical properties</subject><subject>Electrostatic properties</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Light emitting diodes</subject><subject>Metal halide perovskite</subject><subject>Metal halides</subject><subject>Nanocrystals</subject><subject>Nanostructures</subject><subject>Optical properties</subject><subject>Periodic structures</subject><subject>Perovskites</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Self‐assembly</subject><subject>Solvent effects</subject><subject>Superlattices</subject><subject>Surface ligand</subject><subject>Van der Waals forces</subject><issn>1001-604X</issn><issn>1614-7065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EEqWwMkdiTjg7jp1sQEQpqFAkQGKzbMcRKWld7LYoG4_AM_IkuAqCkeXudPf9_0k_QscYEgxATvXM6oQAIQCY4R00CJXGHFi2G-awjBnQ53104P0s8JwTNkBnD6atvz4-pfdmrtouujAvctNYF9k6ujUr2UZj2TaVie6Nsxv_2qxMdCcXVrvOh6s_RHt1aObopw_R0-jysRzHk-nVdXk-iXWKOY5zhrUBngGucqaAaaOwrjgQhgtZqBozWlSKc6VynrFaU1blldKpVpSmmVLpEJ30vktn39bGr8TMrt0ivBQk2EBR4JQGKukp7az3ztRi6Zq5dJ3AILYpiW1K4jelICh6wXvTmu4fWpQ30_JP-w169WwY</recordid><startdate>20220915</startdate><enddate>20220915</enddate><creator>Yang, Zhuoying</creator><creator>Peng, Shaomin</creator><creator>Lin, Fan</creator><creator>Wang, Pengfei</creator><creator>Xing, Guichuan</creator><creator>Yu, Lin</creator><general>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220915</creationdate><title>Self‐assembly Behavior of Metal Halide Perovskite Nanocrystals</title><author>Yang, Zhuoying ; Peng, Shaomin ; Lin, Fan ; Wang, Pengfei ; Xing, Guichuan ; Yu, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3171-861ce07501d86b06ceb1cd702619a9bf1649db77bb8756fc46d8dbc3cb4435bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Assembly</topic><topic>Crystals</topic><topic>Electrical properties</topic><topic>Electrostatic properties</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Light emitting diodes</topic><topic>Metal halide perovskite</topic><topic>Metal halides</topic><topic>Nanocrystals</topic><topic>Nanostructures</topic><topic>Optical properties</topic><topic>Periodic structures</topic><topic>Perovskites</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Self‐assembly</topic><topic>Solvent effects</topic><topic>Superlattices</topic><topic>Surface ligand</topic><topic>Van der Waals forces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Zhuoying</creatorcontrib><creatorcontrib>Peng, Shaomin</creatorcontrib><creatorcontrib>Lin, Fan</creatorcontrib><creatorcontrib>Wang, Pengfei</creatorcontrib><creatorcontrib>Xing, Guichuan</creatorcontrib><creatorcontrib>Yu, Lin</creatorcontrib><collection>CrossRef</collection><jtitle>Chinese journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Zhuoying</au><au>Peng, Shaomin</au><au>Lin, Fan</au><au>Wang, Pengfei</au><au>Xing, Guichuan</au><au>Yu, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐assembly Behavior of Metal Halide Perovskite Nanocrystals</atitle><jtitle>Chinese journal of chemistry</jtitle><date>2022-09-15</date><risdate>2022</risdate><volume>40</volume><issue>18</issue><spage>2239</spage><epage>2248</epage><pages>2239-2248</pages><issn>1001-604X</issn><eissn>1614-7065</eissn><abstract>Comprehensive Summary The self‐assembled metal halide perovskite (MHP) nanocrystal superlattices have attracted many researchers due to their exceptional optical and electrical properties. The bottom‐up self‐assembly can be facile to generate ideal and periodic structures. The superlattices’ stability can be improved and the photoluminescence lifetime can be extended by an order of magnitude. However, due to lack of a comprehensive and systematic understanding of the internal interactions on self‐assembled processes now, superlattices cannot be obtained controllably and play full use of their advantages. Therefore, gaining a deep insight of interaction forces about self‐assemblies is the premise of designing and controlling the degree of self‐assembly so as to prepare ideal materials. In this review, the definitions and functions of driving forces including van der Waals forces, electrostatic interactions and hydrogen bonds are discussed. Subsequently, we aim to explore the dominant factors affecting the driving forces, which can make a difference in the process of MHP self‐assembly. Based on current researches, we emphasize on three aspects−the core of nanocrystals, surface ligands and solvents−to clarify their critical roles in controlling the driving forces. Finally, the outlooks and perspectives of how to facilitate the MHP self‐assembly and their application on blue light emitting diodes are discussed. Compared with top‐down strategies, the bottom‐up self‐assembly offers a facile and time‐saving technique to create micrometer‐scale to macroscale structures. We emphasize on three aspects−the core of nanocrystals, surface ligands and solvents−to clarify their critical roles in controlling the driving forces during the process of self‐assembled metal halide perovskite due to lack of comprehension on them at present.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</pub><doi>10.1002/cjoc.202200161</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1001-604X
ispartof Chinese journal of chemistry, 2022-09, Vol.40 (18), p.2239-2248
issn 1001-604X
1614-7065
language eng
recordid cdi_proquest_journals_2702099134
source Wiley Online Library Journals Frontfile Complete
subjects Assembly
Crystals
Electrical properties
Electrostatic properties
Hydrogen bonding
Hydrogen bonds
Light emitting diodes
Metal halide perovskite
Metal halides
Nanocrystals
Nanostructures
Optical properties
Periodic structures
Perovskites
Photoluminescence
Photons
Self‐assembly
Solvent effects
Superlattices
Surface ligand
Van der Waals forces
title Self‐assembly Behavior of Metal Halide Perovskite Nanocrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A16%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90assembly%20Behavior%20of%20Metal%20Halide%20Perovskite%20Nanocrystals&rft.jtitle=Chinese%20journal%20of%20chemistry&rft.au=Yang,%20Zhuoying&rft.date=2022-09-15&rft.volume=40&rft.issue=18&rft.spage=2239&rft.epage=2248&rft.pages=2239-2248&rft.issn=1001-604X&rft.eissn=1614-7065&rft_id=info:doi/10.1002/cjoc.202200161&rft_dat=%3Cproquest_cross%3E2702099134%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2702099134&rft_id=info:pmid/&rfr_iscdi=true