Vertex-Face/Zeta correspondence
We present the characteristic polynomial for the transition matrix of a vertex-face walk on a graph, and obtain its spectra. Furthermore, we express the characteristic polynomial for the transition matrix of a vertex-face walk on the 2-dimensional torus by using its adjacency matrix, and obtain its...
Gespeichert in:
Veröffentlicht in: | Journal of algebraic combinatorics 2022-09, Vol.56 (2), p.527-545 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 545 |
---|---|
container_issue | 2 |
container_start_page | 527 |
container_title | Journal of algebraic combinatorics |
container_volume | 56 |
creator | Komatsu, Takashi Konno, Norio Sato, Iwao |
description | We present the characteristic polynomial for the transition matrix of a vertex-face walk on a graph, and obtain its spectra. Furthermore, we express the characteristic polynomial for the transition matrix of a vertex-face walk on the 2-dimensional torus by using its adjacency matrix, and obtain its spectra. As an application, we define a new walk-type zeta function with respect to the transition matrix of a vertex-face walk on the two-dimensional torus, and present its explicit formula. |
doi_str_mv | 10.1007/s10801-022-01122-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2701852899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2701852899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-52ad2bf928ff7b7b145c936fbfe1948737dde9f5e05673607e8843fcf490c9843</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMoWFf_gBcFz3Fn0qbJHGVxV2HBi3rwEtp0Ii7arkkX9N8breDNy8wc3nvz-IQ4RbhEADNPCBZQglISEPPUe6JAbZQkJLUvCiClJVmiQ3GU0gYAyKIuxNkjx5E_5LLxPH_isTn3Q4yctkPfce_5WByE5jXxye-eiYfl9f3iRq7vVreLq7X0JdIotWo61QZSNgTTmhYr7amsQxsYqbKmNF3HFDSDrk1Zg2FrqzL4UBF4yudMXEy52zi87ziNbjPsYp9fOmUArVa5e1apSeXjkFLk4Lbx5a2Jnw7BfYNwEwiXQbgfEE5nUzmZUhb3zxz_ov9xfQHtBl6B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2701852899</pqid></control><display><type>article</type><title>Vertex-Face/Zeta correspondence</title><source>SpringerLink Journals - AutoHoldings</source><creator>Komatsu, Takashi ; Konno, Norio ; Sato, Iwao</creator><creatorcontrib>Komatsu, Takashi ; Konno, Norio ; Sato, Iwao</creatorcontrib><description>We present the characteristic polynomial for the transition matrix of a vertex-face walk on a graph, and obtain its spectra. Furthermore, we express the characteristic polynomial for the transition matrix of a vertex-face walk on the 2-dimensional torus by using its adjacency matrix, and obtain its spectra. As an application, we define a new walk-type zeta function with respect to the transition matrix of a vertex-face walk on the two-dimensional torus, and present its explicit formula.</description><identifier>ISSN: 0925-9899</identifier><identifier>EISSN: 1572-9192</identifier><identifier>DOI: 10.1007/s10801-022-01122-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Combinatorics ; Computer Science ; Convex and Discrete Geometry ; Group Theory and Generalizations ; Lattices ; Mathematics ; Mathematics and Statistics ; Order ; Ordered Algebraic Structures ; Polynomials ; Spectra ; Toruses</subject><ispartof>Journal of algebraic combinatorics, 2022-09, Vol.56 (2), p.527-545</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-52ad2bf928ff7b7b145c936fbfe1948737dde9f5e05673607e8843fcf490c9843</citedby><cites>FETCH-LOGICAL-c319t-52ad2bf928ff7b7b145c936fbfe1948737dde9f5e05673607e8843fcf490c9843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10801-022-01122-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10801-022-01122-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Komatsu, Takashi</creatorcontrib><creatorcontrib>Konno, Norio</creatorcontrib><creatorcontrib>Sato, Iwao</creatorcontrib><title>Vertex-Face/Zeta correspondence</title><title>Journal of algebraic combinatorics</title><addtitle>J Algebr Comb</addtitle><description>We present the characteristic polynomial for the transition matrix of a vertex-face walk on a graph, and obtain its spectra. Furthermore, we express the characteristic polynomial for the transition matrix of a vertex-face walk on the 2-dimensional torus by using its adjacency matrix, and obtain its spectra. As an application, we define a new walk-type zeta function with respect to the transition matrix of a vertex-face walk on the two-dimensional torus, and present its explicit formula.</description><subject>Combinatorics</subject><subject>Computer Science</subject><subject>Convex and Discrete Geometry</subject><subject>Group Theory and Generalizations</subject><subject>Lattices</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Order</subject><subject>Ordered Algebraic Structures</subject><subject>Polynomials</subject><subject>Spectra</subject><subject>Toruses</subject><issn>0925-9899</issn><issn>1572-9192</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMoWFf_gBcFz3Fn0qbJHGVxV2HBi3rwEtp0Ii7arkkX9N8breDNy8wc3nvz-IQ4RbhEADNPCBZQglISEPPUe6JAbZQkJLUvCiClJVmiQ3GU0gYAyKIuxNkjx5E_5LLxPH_isTn3Q4yctkPfce_5WByE5jXxye-eiYfl9f3iRq7vVreLq7X0JdIotWo61QZSNgTTmhYr7amsQxsYqbKmNF3HFDSDrk1Zg2FrqzL4UBF4yudMXEy52zi87ziNbjPsYp9fOmUArVa5e1apSeXjkFLk4Lbx5a2Jnw7BfYNwEwiXQbgfEE5nUzmZUhb3zxz_ov9xfQHtBl6B</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Komatsu, Takashi</creator><creator>Konno, Norio</creator><creator>Sato, Iwao</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220901</creationdate><title>Vertex-Face/Zeta correspondence</title><author>Komatsu, Takashi ; Konno, Norio ; Sato, Iwao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-52ad2bf928ff7b7b145c936fbfe1948737dde9f5e05673607e8843fcf490c9843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Combinatorics</topic><topic>Computer Science</topic><topic>Convex and Discrete Geometry</topic><topic>Group Theory and Generalizations</topic><topic>Lattices</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Order</topic><topic>Ordered Algebraic Structures</topic><topic>Polynomials</topic><topic>Spectra</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Komatsu, Takashi</creatorcontrib><creatorcontrib>Konno, Norio</creatorcontrib><creatorcontrib>Sato, Iwao</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of algebraic combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Komatsu, Takashi</au><au>Konno, Norio</au><au>Sato, Iwao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vertex-Face/Zeta correspondence</atitle><jtitle>Journal of algebraic combinatorics</jtitle><stitle>J Algebr Comb</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>56</volume><issue>2</issue><spage>527</spage><epage>545</epage><pages>527-545</pages><issn>0925-9899</issn><eissn>1572-9192</eissn><abstract>We present the characteristic polynomial for the transition matrix of a vertex-face walk on a graph, and obtain its spectra. Furthermore, we express the characteristic polynomial for the transition matrix of a vertex-face walk on the 2-dimensional torus by using its adjacency matrix, and obtain its spectra. As an application, we define a new walk-type zeta function with respect to the transition matrix of a vertex-face walk on the two-dimensional torus, and present its explicit formula.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10801-022-01122-5</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-9899 |
ispartof | Journal of algebraic combinatorics, 2022-09, Vol.56 (2), p.527-545 |
issn | 0925-9899 1572-9192 |
language | eng |
recordid | cdi_proquest_journals_2701852899 |
source | SpringerLink Journals - AutoHoldings |
subjects | Combinatorics Computer Science Convex and Discrete Geometry Group Theory and Generalizations Lattices Mathematics Mathematics and Statistics Order Ordered Algebraic Structures Polynomials Spectra Toruses |
title | Vertex-Face/Zeta correspondence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A08%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vertex-Face/Zeta%20correspondence&rft.jtitle=Journal%20of%20algebraic%20combinatorics&rft.au=Komatsu,%20Takashi&rft.date=2022-09-01&rft.volume=56&rft.issue=2&rft.spage=527&rft.epage=545&rft.pages=527-545&rft.issn=0925-9899&rft.eissn=1572-9192&rft_id=info:doi/10.1007/s10801-022-01122-5&rft_dat=%3Cproquest_cross%3E2701852899%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2701852899&rft_id=info:pmid/&rfr_iscdi=true |