Vertex-Face/Zeta correspondence
We present the characteristic polynomial for the transition matrix of a vertex-face walk on a graph, and obtain its spectra. Furthermore, we express the characteristic polynomial for the transition matrix of a vertex-face walk on the 2-dimensional torus by using its adjacency matrix, and obtain its...
Gespeichert in:
Veröffentlicht in: | Journal of algebraic combinatorics 2022-09, Vol.56 (2), p.527-545 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present the characteristic polynomial for the transition matrix of a vertex-face walk on a graph, and obtain its spectra. Furthermore, we express the characteristic polynomial for the transition matrix of a vertex-face walk on the 2-dimensional torus by using its adjacency matrix, and obtain its spectra. As an application, we define a new walk-type zeta function with respect to the transition matrix of a vertex-face walk on the two-dimensional torus, and present its explicit formula. |
---|---|
ISSN: | 0925-9899 1572-9192 |
DOI: | 10.1007/s10801-022-01122-5 |