Convergence of batch gradient algorithm with smoothing composition of group l0 and l1/2 regularization for feedforward neural networks
In this paper, we prove the convergence of batch gradient method for training feedforward neural network; we have proposed a new penalty term based on composition of smoothing L 1 / 2 penalty for weights vectors incoming to hidden nodes and smoothing group L 0 regularization for the resulting vector...
Gespeichert in:
Veröffentlicht in: | Progress in artificial intelligence 2022, Vol.11 (3), p.269-278 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 278 |
---|---|
container_issue | 3 |
container_start_page | 269 |
container_title | Progress in artificial intelligence |
container_volume | 11 |
creator | Ramchoun, Hassan Ettaouil, Mohamed |
description | In this paper, we prove the convergence of batch gradient method for training feedforward neural network; we have proposed a new penalty term based on composition of smoothing
L
1
/
2
penalty for weights vectors incoming to hidden nodes and smoothing group
L
0
regularization for the resulting vector (BGSGL
0
L
1
/
2
). This procedure forces weights to become smaller in group level, after training, which allow to remove some redundant hidden nodes. Moreover, it can remove some redundant weights of the surviving hidden nodes. The conditions of convergence are given. The importance of our proposed regularization objective is also tested on numerical examples of classification and regression task. |
doi_str_mv | 10.1007/s13748-022-00285-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2701552434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2701552434</sourcerecordid><originalsourceid>FETCH-LOGICAL-p723-cb1cfea592bc45a0472603547ddbb587a9fbdb8809bb109ba8b7de31b1609a673</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRS0EElXpD7CyxDp0_IqTJap4SZXYdB_ZsZOmpHawEyrxAXw3botgM3cWZ2Y0B6FbAvcEQC4jYZIXGVCaAdBCZOwCzSgpaZazHC7_ekGv0SLGHSSKcCCMz9D3yrtPG1rraot9g7Ua6y1ugzKddSNWfetDN273-JAqjnvvx23nWlz7_eBjN3beHcfa4KcB94CVM7gnS4qDbadehe5LnZjGB9xYa1IeVDDY2SmoPsV48OE93qCrRvXRLn5zjjZPj5vVS7Z-e35dPayzQVKW1ZrUjVWipLrmQgGXNAcmuDRGa1FIVTba6KKAUmuSiiq0NJYRTXIoVS7ZHN2d1w7Bf0w2jtXOT8GlixWVQISgnPFEsTMVh5B-teGfIlAdlVdn5VVSXp2UV4z9ALlYdqU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2701552434</pqid></control><display><type>article</type><title>Convergence of batch gradient algorithm with smoothing composition of group l0 and l1/2 regularization for feedforward neural networks</title><source>SpringerNature Journals</source><creator>Ramchoun, Hassan ; Ettaouil, Mohamed</creator><creatorcontrib>Ramchoun, Hassan ; Ettaouil, Mohamed</creatorcontrib><description>In this paper, we prove the convergence of batch gradient method for training feedforward neural network; we have proposed a new penalty term based on composition of smoothing
L
1
/
2
penalty for weights vectors incoming to hidden nodes and smoothing group
L
0
regularization for the resulting vector (BGSGL
0
L
1
/
2
). This procedure forces weights to become smaller in group level, after training, which allow to remove some redundant hidden nodes. Moreover, it can remove some redundant weights of the surviving hidden nodes. The conditions of convergence are given. The importance of our proposed regularization objective is also tested on numerical examples of classification and regression task.</description><identifier>ISSN: 2192-6352</identifier><identifier>EISSN: 2192-6360</identifier><identifier>DOI: 10.1007/s13748-022-00285-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Artificial neural networks ; Composition ; Computational Intelligence ; Computer Imaging ; Computer Science ; Control ; Convergence ; Data Mining and Knowledge Discovery ; Mechatronics ; Natural Language Processing (NLP) ; Nodes ; Pattern Recognition and Graphics ; Regular Paper ; Regularization ; Robotics ; Smoothing ; Training ; Vision</subject><ispartof>Progress in artificial intelligence, 2022, Vol.11 (3), p.269-278</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p723-cb1cfea592bc45a0472603547ddbb587a9fbdb8809bb109ba8b7de31b1609a673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13748-022-00285-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13748-022-00285-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ramchoun, Hassan</creatorcontrib><creatorcontrib>Ettaouil, Mohamed</creatorcontrib><title>Convergence of batch gradient algorithm with smoothing composition of group l0 and l1/2 regularization for feedforward neural networks</title><title>Progress in artificial intelligence</title><addtitle>Prog Artif Intell</addtitle><description>In this paper, we prove the convergence of batch gradient method for training feedforward neural network; we have proposed a new penalty term based on composition of smoothing
L
1
/
2
penalty for weights vectors incoming to hidden nodes and smoothing group
L
0
regularization for the resulting vector (BGSGL
0
L
1
/
2
). This procedure forces weights to become smaller in group level, after training, which allow to remove some redundant hidden nodes. Moreover, it can remove some redundant weights of the surviving hidden nodes. The conditions of convergence are given. The importance of our proposed regularization objective is also tested on numerical examples of classification and regression task.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Composition</subject><subject>Computational Intelligence</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Control</subject><subject>Convergence</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Mechatronics</subject><subject>Natural Language Processing (NLP)</subject><subject>Nodes</subject><subject>Pattern Recognition and Graphics</subject><subject>Regular Paper</subject><subject>Regularization</subject><subject>Robotics</subject><subject>Smoothing</subject><subject>Training</subject><subject>Vision</subject><issn>2192-6352</issn><issn>2192-6360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkMtOwzAQRS0EElXpD7CyxDp0_IqTJap4SZXYdB_ZsZOmpHawEyrxAXw3botgM3cWZ2Y0B6FbAvcEQC4jYZIXGVCaAdBCZOwCzSgpaZazHC7_ekGv0SLGHSSKcCCMz9D3yrtPG1rraot9g7Ua6y1ugzKddSNWfetDN273-JAqjnvvx23nWlz7_eBjN3beHcfa4KcB94CVM7gnS4qDbadehe5LnZjGB9xYa1IeVDDY2SmoPsV48OE93qCrRvXRLn5zjjZPj5vVS7Z-e35dPayzQVKW1ZrUjVWipLrmQgGXNAcmuDRGa1FIVTba6KKAUmuSiiq0NJYRTXIoVS7ZHN2d1w7Bf0w2jtXOT8GlixWVQISgnPFEsTMVh5B-teGfIlAdlVdn5VVSXp2UV4z9ALlYdqU</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ramchoun, Hassan</creator><creator>Ettaouil, Mohamed</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2022</creationdate><title>Convergence of batch gradient algorithm with smoothing composition of group l0 and l1/2 regularization for feedforward neural networks</title><author>Ramchoun, Hassan ; Ettaouil, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p723-cb1cfea592bc45a0472603547ddbb587a9fbdb8809bb109ba8b7de31b1609a673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Composition</topic><topic>Computational Intelligence</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Control</topic><topic>Convergence</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Mechatronics</topic><topic>Natural Language Processing (NLP)</topic><topic>Nodes</topic><topic>Pattern Recognition and Graphics</topic><topic>Regular Paper</topic><topic>Regularization</topic><topic>Robotics</topic><topic>Smoothing</topic><topic>Training</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramchoun, Hassan</creatorcontrib><creatorcontrib>Ettaouil, Mohamed</creatorcontrib><jtitle>Progress in artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramchoun, Hassan</au><au>Ettaouil, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of batch gradient algorithm with smoothing composition of group l0 and l1/2 regularization for feedforward neural networks</atitle><jtitle>Progress in artificial intelligence</jtitle><stitle>Prog Artif Intell</stitle><date>2022</date><risdate>2022</risdate><volume>11</volume><issue>3</issue><spage>269</spage><epage>278</epage><pages>269-278</pages><issn>2192-6352</issn><eissn>2192-6360</eissn><abstract>In this paper, we prove the convergence of batch gradient method for training feedforward neural network; we have proposed a new penalty term based on composition of smoothing
L
1
/
2
penalty for weights vectors incoming to hidden nodes and smoothing group
L
0
regularization for the resulting vector (BGSGL
0
L
1
/
2
). This procedure forces weights to become smaller in group level, after training, which allow to remove some redundant hidden nodes. Moreover, it can remove some redundant weights of the surviving hidden nodes. The conditions of convergence are given. The importance of our proposed regularization objective is also tested on numerical examples of classification and regression task.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13748-022-00285-3</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-6352 |
ispartof | Progress in artificial intelligence, 2022, Vol.11 (3), p.269-278 |
issn | 2192-6352 2192-6360 |
language | eng |
recordid | cdi_proquest_journals_2701552434 |
source | SpringerNature Journals |
subjects | Algorithms Artificial Intelligence Artificial neural networks Composition Computational Intelligence Computer Imaging Computer Science Control Convergence Data Mining and Knowledge Discovery Mechatronics Natural Language Processing (NLP) Nodes Pattern Recognition and Graphics Regular Paper Regularization Robotics Smoothing Training Vision |
title | Convergence of batch gradient algorithm with smoothing composition of group l0 and l1/2 regularization for feedforward neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A43%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20batch%20gradient%20algorithm%20with%20smoothing%20composition%20of%20group%20l0%20and%20l1/2%20regularization%20for%20feedforward%20neural%20networks&rft.jtitle=Progress%20in%20artificial%20intelligence&rft.au=Ramchoun,%20Hassan&rft.date=2022&rft.volume=11&rft.issue=3&rft.spage=269&rft.epage=278&rft.pages=269-278&rft.issn=2192-6352&rft.eissn=2192-6360&rft_id=info:doi/10.1007/s13748-022-00285-3&rft_dat=%3Cproquest_sprin%3E2701552434%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2701552434&rft_id=info:pmid/&rfr_iscdi=true |