ℓp-Norm Multiway Cut

We introduce and study ℓ p - norm - multiway - cut : the input here is an undirected graph with non-negative edge weights along with k terminals and the goal is to find a partition of the vertex set into k parts each containing exactly one terminal so as to minimize the ℓ p -norm of the cut values o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica 2022, Vol.84 (9), p.2667-2701
Hauptverfasser: Chandrasekaran, Karthekeyan, Wang, Weihang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2701
container_issue 9
container_start_page 2667
container_title Algorithmica
container_volume 84
creator Chandrasekaran, Karthekeyan
Wang, Weihang
description We introduce and study ℓ p - norm - multiway - cut : the input here is an undirected graph with non-negative edge weights along with k terminals and the goal is to find a partition of the vertex set into k parts each containing exactly one terminal so as to minimize the ℓ p -norm of the cut values of the parts. This is a unified generalization of min-sum multiway cut (when p = 1 ) and min–max multiway cut (when p = ∞ ), both of which are well-studied classic problems in the graph partitioning literature. We show that ℓ p - norm - multiway - cut is NP-hard for constant number of terminals and is NP-hard in planar graphs. On the algorithmic side, we design an O ( log 1.5 n log 0.5 k ) -approximation for all p ≥ 1 . We also show an integrality gap of Ω ( k 1 - 1 / p ) for a natural convex program and an O ( k 1 - 1 / p - ϵ ) -inapproximability for any constant ϵ > 0 assuming the small set expansion hypothesis.
doi_str_mv 10.1007/s00453-022-00983-3
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2701552402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2701552402</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1423-65c74296b03d5eae16801caf46b4cc601749d0fe7877be0ff365e584009562e83</originalsourceid><addsrcrecordid>eNpFkMtKxEAQRRtRMI5uXbgacN1a1VX9yFKCLxh1o-smyXRkhnES0wni3j_wD_0SWyO4uhQc6l6OECcIZwhgzyMAa5KglATIHUnaERkypVMz7ooM0DrJBu2-OIhxDYDK5iYTx18fn528b_uX-d24GVZv5fu8GIdDsdeUmxiO_nImnq4uH4sbuXi4vi0uFrJDViSNri2r3FRASx3KgMYB1mXDpuK6NqmU8yU0wTprqwBNQ0YH7Tht1EYFRzNxOv3t-vZ1DHHw63bst6nSKwuotWJQiaKJil2_2j6H_p9C8D8C_CTAJwH-V4An-gZr2Etj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2701552402</pqid></control><display><type>article</type><title>ℓp-Norm Multiway Cut</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chandrasekaran, Karthekeyan ; Wang, Weihang</creator><creatorcontrib>Chandrasekaran, Karthekeyan ; Wang, Weihang</creatorcontrib><description>We introduce and study ℓ p - norm - multiway - cut : the input here is an undirected graph with non-negative edge weights along with k terminals and the goal is to find a partition of the vertex set into k parts each containing exactly one terminal so as to minimize the ℓ p -norm of the cut values of the parts. This is a unified generalization of min-sum multiway cut (when p = 1 ) and min–max multiway cut (when p = ∞ ), both of which are well-studied classic problems in the graph partitioning literature. We show that ℓ p - norm - multiway - cut is NP-hard for constant number of terminals and is NP-hard in planar graphs. On the algorithmic side, we design an O ( log 1.5 n log 0.5 k ) -approximation for all p ≥ 1 . We also show an integrality gap of Ω ( k 1 - 1 / p ) for a natural convex program and an O ( k 1 - 1 / p - ϵ ) -inapproximability for any constant ϵ &gt; 0 assuming the small set expansion hypothesis.</description><identifier>ISSN: 0178-4617</identifier><identifier>EISSN: 1432-0541</identifier><identifier>DOI: 10.1007/s00453-022-00983-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithm Analysis and Problem Complexity ; Algorithms ; Computer Science ; Computer Systems Organization and Communication Networks ; Data Structures and Information Theory ; Mathematics of Computing ; Terminals ; Theory of Computation ; Vertex sets</subject><ispartof>Algorithmica, 2022, Vol.84 (9), p.2667-2701</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0628-5532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00453-022-00983-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00453-022-00983-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chandrasekaran, Karthekeyan</creatorcontrib><creatorcontrib>Wang, Weihang</creatorcontrib><title>ℓp-Norm Multiway Cut</title><title>Algorithmica</title><addtitle>Algorithmica</addtitle><description>We introduce and study ℓ p - norm - multiway - cut : the input here is an undirected graph with non-negative edge weights along with k terminals and the goal is to find a partition of the vertex set into k parts each containing exactly one terminal so as to minimize the ℓ p -norm of the cut values of the parts. This is a unified generalization of min-sum multiway cut (when p = 1 ) and min–max multiway cut (when p = ∞ ), both of which are well-studied classic problems in the graph partitioning literature. We show that ℓ p - norm - multiway - cut is NP-hard for constant number of terminals and is NP-hard in planar graphs. On the algorithmic side, we design an O ( log 1.5 n log 0.5 k ) -approximation for all p ≥ 1 . We also show an integrality gap of Ω ( k 1 - 1 / p ) for a natural convex program and an O ( k 1 - 1 / p - ϵ ) -inapproximability for any constant ϵ &gt; 0 assuming the small set expansion hypothesis.</description><subject>Algorithm Analysis and Problem Complexity</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Structures and Information Theory</subject><subject>Mathematics of Computing</subject><subject>Terminals</subject><subject>Theory of Computation</subject><subject>Vertex sets</subject><issn>0178-4617</issn><issn>1432-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkMtKxEAQRRtRMI5uXbgacN1a1VX9yFKCLxh1o-smyXRkhnES0wni3j_wD_0SWyO4uhQc6l6OECcIZwhgzyMAa5KglATIHUnaERkypVMz7ooM0DrJBu2-OIhxDYDK5iYTx18fn528b_uX-d24GVZv5fu8GIdDsdeUmxiO_nImnq4uH4sbuXi4vi0uFrJDViSNri2r3FRASx3KgMYB1mXDpuK6NqmU8yU0wTprqwBNQ0YH7Tht1EYFRzNxOv3t-vZ1DHHw63bst6nSKwuotWJQiaKJil2_2j6H_p9C8D8C_CTAJwH-V4An-gZr2Etj</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Chandrasekaran, Karthekeyan</creator><creator>Wang, Weihang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0002-0628-5532</orcidid></search><sort><creationdate>2022</creationdate><title>ℓp-Norm Multiway Cut</title><author>Chandrasekaran, Karthekeyan ; Wang, Weihang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1423-65c74296b03d5eae16801caf46b4cc601749d0fe7877be0ff365e584009562e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithm Analysis and Problem Complexity</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Structures and Information Theory</topic><topic>Mathematics of Computing</topic><topic>Terminals</topic><topic>Theory of Computation</topic><topic>Vertex sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandrasekaran, Karthekeyan</creatorcontrib><creatorcontrib>Wang, Weihang</creatorcontrib><jtitle>Algorithmica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandrasekaran, Karthekeyan</au><au>Wang, Weihang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ℓp-Norm Multiway Cut</atitle><jtitle>Algorithmica</jtitle><stitle>Algorithmica</stitle><date>2022</date><risdate>2022</risdate><volume>84</volume><issue>9</issue><spage>2667</spage><epage>2701</epage><pages>2667-2701</pages><issn>0178-4617</issn><eissn>1432-0541</eissn><abstract>We introduce and study ℓ p - norm - multiway - cut : the input here is an undirected graph with non-negative edge weights along with k terminals and the goal is to find a partition of the vertex set into k parts each containing exactly one terminal so as to minimize the ℓ p -norm of the cut values of the parts. This is a unified generalization of min-sum multiway cut (when p = 1 ) and min–max multiway cut (when p = ∞ ), both of which are well-studied classic problems in the graph partitioning literature. We show that ℓ p - norm - multiway - cut is NP-hard for constant number of terminals and is NP-hard in planar graphs. On the algorithmic side, we design an O ( log 1.5 n log 0.5 k ) -approximation for all p ≥ 1 . We also show an integrality gap of Ω ( k 1 - 1 / p ) for a natural convex program and an O ( k 1 - 1 / p - ϵ ) -inapproximability for any constant ϵ &gt; 0 assuming the small set expansion hypothesis.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00453-022-00983-3</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-0628-5532</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0178-4617
ispartof Algorithmica, 2022, Vol.84 (9), p.2667-2701
issn 0178-4617
1432-0541
language eng
recordid cdi_proquest_journals_2701552402
source SpringerLink Journals - AutoHoldings
subjects Algorithm Analysis and Problem Complexity
Algorithms
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Mathematics of Computing
Terminals
Theory of Computation
Vertex sets
title ℓp-Norm Multiway Cut
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E2%84%93p-Norm%20Multiway%20Cut&rft.jtitle=Algorithmica&rft.au=Chandrasekaran,%20Karthekeyan&rft.date=2022&rft.volume=84&rft.issue=9&rft.spage=2667&rft.epage=2701&rft.pages=2667-2701&rft.issn=0178-4617&rft.eissn=1432-0541&rft_id=info:doi/10.1007/s00453-022-00983-3&rft_dat=%3Cproquest_sprin%3E2701552402%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2701552402&rft_id=info:pmid/&rfr_iscdi=true