Enhanced Macroporous Cationic Chitosan Hydrogel by Freezing and Thawing Method with Superadsorption Capacity for Anionic Dyes
In this study, we have developed a simple technique to prepare cationic chitosan hydrogel with interconnected porous structure using freeze–thaw process and the obtained hydrogel was named FCS hydrogel. Scanning electron microscopy (SEM) imaging discovered that the synthesized hydrogel demonstrated...
Gespeichert in:
Veröffentlicht in: | Journal of polymers and the environment 2022-09, Vol.30 (9), p.3815-3831 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3831 |
---|---|
container_issue | 9 |
container_start_page | 3815 |
container_title | Journal of polymers and the environment |
container_volume | 30 |
creator | Athab, Zahraa H. Halbus, Ahmed F. Abbas, Ahmed S. Salman, Jasim M. Atiyah, Abbas J. |
description | In this study, we have developed a simple technique to prepare cationic chitosan hydrogel with interconnected porous structure using freeze–thaw process and the obtained hydrogel was named FCS hydrogel. Scanning electron microscopy (SEM) imaging discovered that the synthesized hydrogel demonstrated interconnected porous structure in the scope of 5–20 μm. We also showed that the FCS hydrogel exhibits pH responsiveness behavior, and demonstrated reversible swelling and de-swelling behaviors maintaining their mechanical stability. We demonstrate that the FCS hydrogel swelling capacity decreased at alkaline pH and rose with a decline in pH value. Besides, the FCS hydrogel presented specific surface area of 78.25 ± 8.75 m
2
g
−1
, due to the cryogenic treatment of glutaraldehyde cross-linked chitosan hydrogel could increase the surface area and permeability of composite hydrogel and then strongly increasing the adsorption capacity. Subsequently, the FCS monolithic hydrogel tested dyes removal, which provides a high removal efficiency towards anionic dyes including congo red (CR) and sodium fluorescein (SFL) dyes. Significantly, we show that the FCS hydrogel could be regenerated and reused as an adsorbent for wastewater treatment without significant loss of pollutants removal efficiency over a number of adsorption and washing cycles. This study offers a promising environmental friendly and sustainable interconnected porous hydrogel for anionic dye removal from wastewater. |
doi_str_mv | 10.1007/s10924-022-02462-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2701322307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2701322307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e32b146ebfd5cd6540fcf8cafe5b30b62461e2d09acda863b3e368d46391fe993</originalsourceid><addsrcrecordid>eNp9kE9LwzAYh4soOKdfwFPAczV_2mw5jrk5YcOD8xzS5O3aMZOadIwKfndTK3jz8JL38Ps9L3mS5Jbge4Lx5CEQLGiWYkrjZJymp7NkRPIJTaeCiPN-5zylecYuk6sQ9hhjEYuj5GthK2U1GLRR2rvGeXcMaK7a2tlao3lVty4oi1ad8W4HB1R0aOkBPmu7Q8oatK3Uqd830FbOoFPdVuj12IBXJjjf9JyIa5Su2w6VzqOZHdCPHYTr5KJUhwA3v-84eVsutvNVun55ep7P1qmmgrUpMFqQjENRmlwbnme41OVUqxLyguGCxx8ToAYLpY2aclYwYHxqMs4EKUEINk7uBm7j3ccRQiv37uhtPCnpBBNGKcOTmKJDKooIwUMpG1-_K99JgmWvWQ6aZdQsfzTLUyyxoRRi2O7A_6H_aX0DSkeDDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2701322307</pqid></control><display><type>article</type><title>Enhanced Macroporous Cationic Chitosan Hydrogel by Freezing and Thawing Method with Superadsorption Capacity for Anionic Dyes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Athab, Zahraa H. ; Halbus, Ahmed F. ; Abbas, Ahmed S. ; Salman, Jasim M. ; Atiyah, Abbas J.</creator><creatorcontrib>Athab, Zahraa H. ; Halbus, Ahmed F. ; Abbas, Ahmed S. ; Salman, Jasim M. ; Atiyah, Abbas J.</creatorcontrib><description>In this study, we have developed a simple technique to prepare cationic chitosan hydrogel with interconnected porous structure using freeze–thaw process and the obtained hydrogel was named FCS hydrogel. Scanning electron microscopy (SEM) imaging discovered that the synthesized hydrogel demonstrated interconnected porous structure in the scope of 5–20 μm. We also showed that the FCS hydrogel exhibits pH responsiveness behavior, and demonstrated reversible swelling and de-swelling behaviors maintaining their mechanical stability. We demonstrate that the FCS hydrogel swelling capacity decreased at alkaline pH and rose with a decline in pH value. Besides, the FCS hydrogel presented specific surface area of 78.25 ± 8.75 m
2
g
−1
, due to the cryogenic treatment of glutaraldehyde cross-linked chitosan hydrogel could increase the surface area and permeability of composite hydrogel and then strongly increasing the adsorption capacity. Subsequently, the FCS monolithic hydrogel tested dyes removal, which provides a high removal efficiency towards anionic dyes including congo red (CR) and sodium fluorescein (SFL) dyes. Significantly, we show that the FCS hydrogel could be regenerated and reused as an adsorbent for wastewater treatment without significant loss of pollutants removal efficiency over a number of adsorption and washing cycles. This study offers a promising environmental friendly and sustainable interconnected porous hydrogel for anionic dye removal from wastewater.</description><identifier>ISSN: 1566-2543</identifier><identifier>EISSN: 1572-8919</identifier><identifier>DOI: 10.1007/s10924-022-02462-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adsorption ; Cations ; Chemistry ; Chemistry and Materials Science ; Chitosan ; Color removal ; Cryogenic treatment ; Dyes ; Environmental Chemistry ; Environmental Engineering/Biotechnology ; Fluorescein ; Freeze thaw cycles ; Freeze-thawing ; Freezing ; Hydrogels ; Industrial Chemistry/Chemical Engineering ; Materials Science ; Mechanical properties ; Original Paper ; Permeability ; pH effects ; Pollutants ; Polymer Sciences ; Scanning electron microscopy ; Surface area ; Surface chemistry ; Swelling ; Thawing ; Wastewater treatment</subject><ispartof>Journal of polymers and the environment, 2022-09, Vol.30 (9), p.3815-3831</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e32b146ebfd5cd6540fcf8cafe5b30b62461e2d09acda863b3e368d46391fe993</citedby><cites>FETCH-LOGICAL-c293t-e32b146ebfd5cd6540fcf8cafe5b30b62461e2d09acda863b3e368d46391fe993</cites><orcidid>0000-0001-9060-7073 ; 0000-0003-0872-417X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10924-022-02462-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10924-022-02462-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Athab, Zahraa H.</creatorcontrib><creatorcontrib>Halbus, Ahmed F.</creatorcontrib><creatorcontrib>Abbas, Ahmed S.</creatorcontrib><creatorcontrib>Salman, Jasim M.</creatorcontrib><creatorcontrib>Atiyah, Abbas J.</creatorcontrib><title>Enhanced Macroporous Cationic Chitosan Hydrogel by Freezing and Thawing Method with Superadsorption Capacity for Anionic Dyes</title><title>Journal of polymers and the environment</title><addtitle>J Polym Environ</addtitle><description>In this study, we have developed a simple technique to prepare cationic chitosan hydrogel with interconnected porous structure using freeze–thaw process and the obtained hydrogel was named FCS hydrogel. Scanning electron microscopy (SEM) imaging discovered that the synthesized hydrogel demonstrated interconnected porous structure in the scope of 5–20 μm. We also showed that the FCS hydrogel exhibits pH responsiveness behavior, and demonstrated reversible swelling and de-swelling behaviors maintaining their mechanical stability. We demonstrate that the FCS hydrogel swelling capacity decreased at alkaline pH and rose with a decline in pH value. Besides, the FCS hydrogel presented specific surface area of 78.25 ± 8.75 m
2
g
−1
, due to the cryogenic treatment of glutaraldehyde cross-linked chitosan hydrogel could increase the surface area and permeability of composite hydrogel and then strongly increasing the adsorption capacity. Subsequently, the FCS monolithic hydrogel tested dyes removal, which provides a high removal efficiency towards anionic dyes including congo red (CR) and sodium fluorescein (SFL) dyes. Significantly, we show that the FCS hydrogel could be regenerated and reused as an adsorbent for wastewater treatment without significant loss of pollutants removal efficiency over a number of adsorption and washing cycles. This study offers a promising environmental friendly and sustainable interconnected porous hydrogel for anionic dye removal from wastewater.</description><subject>Adsorption</subject><subject>Cations</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chitosan</subject><subject>Color removal</subject><subject>Cryogenic treatment</subject><subject>Dyes</subject><subject>Environmental Chemistry</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Fluorescein</subject><subject>Freeze thaw cycles</subject><subject>Freeze-thawing</subject><subject>Freezing</subject><subject>Hydrogels</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Original Paper</subject><subject>Permeability</subject><subject>pH effects</subject><subject>Pollutants</subject><subject>Polymer Sciences</subject><subject>Scanning electron microscopy</subject><subject>Surface area</subject><subject>Surface chemistry</subject><subject>Swelling</subject><subject>Thawing</subject><subject>Wastewater treatment</subject><issn>1566-2543</issn><issn>1572-8919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LwzAYh4soOKdfwFPAczV_2mw5jrk5YcOD8xzS5O3aMZOadIwKfndTK3jz8JL38Ps9L3mS5Jbge4Lx5CEQLGiWYkrjZJymp7NkRPIJTaeCiPN-5zylecYuk6sQ9hhjEYuj5GthK2U1GLRR2rvGeXcMaK7a2tlao3lVty4oi1ad8W4HB1R0aOkBPmu7Q8oatK3Uqd830FbOoFPdVuj12IBXJjjf9JyIa5Su2w6VzqOZHdCPHYTr5KJUhwA3v-84eVsutvNVun55ep7P1qmmgrUpMFqQjENRmlwbnme41OVUqxLyguGCxx8ToAYLpY2aclYwYHxqMs4EKUEINk7uBm7j3ccRQiv37uhtPCnpBBNGKcOTmKJDKooIwUMpG1-_K99JgmWvWQ6aZdQsfzTLUyyxoRRi2O7A_6H_aX0DSkeDDQ</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Athab, Zahraa H.</creator><creator>Halbus, Ahmed F.</creator><creator>Abbas, Ahmed S.</creator><creator>Salman, Jasim M.</creator><creator>Atiyah, Abbas J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9060-7073</orcidid><orcidid>https://orcid.org/0000-0003-0872-417X</orcidid></search><sort><creationdate>20220901</creationdate><title>Enhanced Macroporous Cationic Chitosan Hydrogel by Freezing and Thawing Method with Superadsorption Capacity for Anionic Dyes</title><author>Athab, Zahraa H. ; Halbus, Ahmed F. ; Abbas, Ahmed S. ; Salman, Jasim M. ; Atiyah, Abbas J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e32b146ebfd5cd6540fcf8cafe5b30b62461e2d09acda863b3e368d46391fe993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorption</topic><topic>Cations</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chitosan</topic><topic>Color removal</topic><topic>Cryogenic treatment</topic><topic>Dyes</topic><topic>Environmental Chemistry</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Fluorescein</topic><topic>Freeze thaw cycles</topic><topic>Freeze-thawing</topic><topic>Freezing</topic><topic>Hydrogels</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Original Paper</topic><topic>Permeability</topic><topic>pH effects</topic><topic>Pollutants</topic><topic>Polymer Sciences</topic><topic>Scanning electron microscopy</topic><topic>Surface area</topic><topic>Surface chemistry</topic><topic>Swelling</topic><topic>Thawing</topic><topic>Wastewater treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Athab, Zahraa H.</creatorcontrib><creatorcontrib>Halbus, Ahmed F.</creatorcontrib><creatorcontrib>Abbas, Ahmed S.</creatorcontrib><creatorcontrib>Salman, Jasim M.</creatorcontrib><creatorcontrib>Atiyah, Abbas J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of polymers and the environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Athab, Zahraa H.</au><au>Halbus, Ahmed F.</au><au>Abbas, Ahmed S.</au><au>Salman, Jasim M.</au><au>Atiyah, Abbas J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Macroporous Cationic Chitosan Hydrogel by Freezing and Thawing Method with Superadsorption Capacity for Anionic Dyes</atitle><jtitle>Journal of polymers and the environment</jtitle><stitle>J Polym Environ</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>30</volume><issue>9</issue><spage>3815</spage><epage>3831</epage><pages>3815-3831</pages><issn>1566-2543</issn><eissn>1572-8919</eissn><abstract>In this study, we have developed a simple technique to prepare cationic chitosan hydrogel with interconnected porous structure using freeze–thaw process and the obtained hydrogel was named FCS hydrogel. Scanning electron microscopy (SEM) imaging discovered that the synthesized hydrogel demonstrated interconnected porous structure in the scope of 5–20 μm. We also showed that the FCS hydrogel exhibits pH responsiveness behavior, and demonstrated reversible swelling and de-swelling behaviors maintaining their mechanical stability. We demonstrate that the FCS hydrogel swelling capacity decreased at alkaline pH and rose with a decline in pH value. Besides, the FCS hydrogel presented specific surface area of 78.25 ± 8.75 m
2
g
−1
, due to the cryogenic treatment of glutaraldehyde cross-linked chitosan hydrogel could increase the surface area and permeability of composite hydrogel and then strongly increasing the adsorption capacity. Subsequently, the FCS monolithic hydrogel tested dyes removal, which provides a high removal efficiency towards anionic dyes including congo red (CR) and sodium fluorescein (SFL) dyes. Significantly, we show that the FCS hydrogel could be regenerated and reused as an adsorbent for wastewater treatment without significant loss of pollutants removal efficiency over a number of adsorption and washing cycles. This study offers a promising environmental friendly and sustainable interconnected porous hydrogel for anionic dye removal from wastewater.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10924-022-02462-w</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9060-7073</orcidid><orcidid>https://orcid.org/0000-0003-0872-417X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1566-2543 |
ispartof | Journal of polymers and the environment, 2022-09, Vol.30 (9), p.3815-3831 |
issn | 1566-2543 1572-8919 |
language | eng |
recordid | cdi_proquest_journals_2701322307 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adsorption Cations Chemistry Chemistry and Materials Science Chitosan Color removal Cryogenic treatment Dyes Environmental Chemistry Environmental Engineering/Biotechnology Fluorescein Freeze thaw cycles Freeze-thawing Freezing Hydrogels Industrial Chemistry/Chemical Engineering Materials Science Mechanical properties Original Paper Permeability pH effects Pollutants Polymer Sciences Scanning electron microscopy Surface area Surface chemistry Swelling Thawing Wastewater treatment |
title | Enhanced Macroporous Cationic Chitosan Hydrogel by Freezing and Thawing Method with Superadsorption Capacity for Anionic Dyes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A48%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Macroporous%20Cationic%20Chitosan%20Hydrogel%20by%20Freezing%20and%20Thawing%20Method%20with%20Superadsorption%20Capacity%20for%20Anionic%20Dyes&rft.jtitle=Journal%20of%20polymers%20and%20the%20environment&rft.au=Athab,%20Zahraa%20H.&rft.date=2022-09-01&rft.volume=30&rft.issue=9&rft.spage=3815&rft.epage=3831&rft.pages=3815-3831&rft.issn=1566-2543&rft.eissn=1572-8919&rft_id=info:doi/10.1007/s10924-022-02462-w&rft_dat=%3Cproquest_cross%3E2701322307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2701322307&rft_id=info:pmid/&rfr_iscdi=true |