Deep Supervised Cross-modal Hashing for Ship Image Retrieval
The retrieval of multimodal ship images obtained by remote sensing satellites is an important content of remote sensing data analysis, which is of great significance to improve the ability of marine monitoring. In this paper, We propose a novel cross-modal ship image retrieval method, called Deep Su...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2022-08, Vol.2320 (1), p.12023 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12023 |
container_title | Journal of physics. Conference series |
container_volume | 2320 |
creator | Guo, Jiaen Wang, Haibin Dan, Bo Lu, Yu |
description | The retrieval of multimodal ship images obtained by remote sensing satellites is an important content of remote sensing data analysis, which is of great significance to improve the ability of marine monitoring. In this paper, We propose a novel cross-modal ship image retrieval method, called Deep Supervised Cross-modal Hashing(DSCMH). It consists of a feature learning part and a hash learning part used for feature extraction and hash code generation separately, both two parts have modality-invariant constraints to keep the cross-modal invariability, and the label information is also brought to supervise the above process. Furthermore, we design a class attention module based on the cross-modal class center to strengthen class discrimination. The experiment results show that the proposed method can effectively improve the cross-modal retrieval accuracy of ship images and is better than several state-of-the-art methods. |
doi_str_mv | 10.1088/1742-6596/2320/1/012023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2701116676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2701116676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3283-f71eb84910a0d0d13d4fefd312d15eac7e9870d5275b06a77d471b2ff4aea3213</originalsourceid><addsrcrecordid>eNqFkN9LwzAQgIMoOKd_gwHfhNpc0jYZ-CL1xyYDxelzyJbL1rGtMdkG_ve2VBRB8F7u4L674z5CzoFdAVMqBZnxpMgHRcoFZymkDDjj4oD0vjuH37VSx-QkxiVjognZI9e3iJ5Odh7DvopoaRnqGJN1bc2KDk1cVJs5dXWgk0Xl6Wht5khfcBsq3JvVKTlyZhXx7Cv3ydv93Ws5TMZPD6PyZpzMBFcicRJwqrIBMMMssyBs5tBZAdxCjmYmcaAkszmX-ZQVRkqbSZhy5zKDRnAQfXLR7fWhft9h3OplvQub5qTmkgFAUciioWRHzdoXAjrtQ7U24UMD060q3UrQrRDdqtKgO1XN5GU3WdX-Z_Xjczn5DWpvXQOLP-D_TnwCNcF28g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2701116676</pqid></control><display><type>article</type><title>Deep Supervised Cross-modal Hashing for Ship Image Retrieval</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Guo, Jiaen ; Wang, Haibin ; Dan, Bo ; Lu, Yu</creator><creatorcontrib>Guo, Jiaen ; Wang, Haibin ; Dan, Bo ; Lu, Yu</creatorcontrib><description>The retrieval of multimodal ship images obtained by remote sensing satellites is an important content of remote sensing data analysis, which is of great significance to improve the ability of marine monitoring. In this paper, We propose a novel cross-modal ship image retrieval method, called Deep Supervised Cross-modal Hashing(DSCMH). It consists of a feature learning part and a hash learning part used for feature extraction and hash code generation separately, both two parts have modality-invariant constraints to keep the cross-modal invariability, and the label information is also brought to supervise the above process. Furthermore, we design a class attention module based on the cross-modal class center to strengthen class discrimination. The experiment results show that the proposed method can effectively improve the cross-modal retrieval accuracy of ship images and is better than several state-of-the-art methods.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2320/1/012023</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Data analysis ; Feature extraction ; Machine learning ; Physics ; Remote sensing ; Retrieval ; Satellite imagery</subject><ispartof>Journal of physics. Conference series, 2022-08, Vol.2320 (1), p.12023</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3283-f71eb84910a0d0d13d4fefd312d15eac7e9870d5275b06a77d471b2ff4aea3213</citedby><cites>FETCH-LOGICAL-c3283-f71eb84910a0d0d13d4fefd312d15eac7e9870d5275b06a77d471b2ff4aea3213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2320/1/012023/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>315,782,786,27931,27932,38875,38897,53847,53874</link.rule.ids></links><search><creatorcontrib>Guo, Jiaen</creatorcontrib><creatorcontrib>Wang, Haibin</creatorcontrib><creatorcontrib>Dan, Bo</creatorcontrib><creatorcontrib>Lu, Yu</creatorcontrib><title>Deep Supervised Cross-modal Hashing for Ship Image Retrieval</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The retrieval of multimodal ship images obtained by remote sensing satellites is an important content of remote sensing data analysis, which is of great significance to improve the ability of marine monitoring. In this paper, We propose a novel cross-modal ship image retrieval method, called Deep Supervised Cross-modal Hashing(DSCMH). It consists of a feature learning part and a hash learning part used for feature extraction and hash code generation separately, both two parts have modality-invariant constraints to keep the cross-modal invariability, and the label information is also brought to supervise the above process. Furthermore, we design a class attention module based on the cross-modal class center to strengthen class discrimination. The experiment results show that the proposed method can effectively improve the cross-modal retrieval accuracy of ship images and is better than several state-of-the-art methods.</description><subject>Data analysis</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Physics</subject><subject>Remote sensing</subject><subject>Retrieval</subject><subject>Satellite imagery</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkN9LwzAQgIMoOKd_gwHfhNpc0jYZ-CL1xyYDxelzyJbL1rGtMdkG_ve2VBRB8F7u4L674z5CzoFdAVMqBZnxpMgHRcoFZymkDDjj4oD0vjuH37VSx-QkxiVjognZI9e3iJ5Odh7DvopoaRnqGJN1bc2KDk1cVJs5dXWgk0Xl6Wht5khfcBsq3JvVKTlyZhXx7Cv3ydv93Ws5TMZPD6PyZpzMBFcicRJwqrIBMMMssyBs5tBZAdxCjmYmcaAkszmX-ZQVRkqbSZhy5zKDRnAQfXLR7fWhft9h3OplvQub5qTmkgFAUciioWRHzdoXAjrtQ7U24UMD060q3UrQrRDdqtKgO1XN5GU3WdX-Z_Xjczn5DWpvXQOLP-D_TnwCNcF28g</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Guo, Jiaen</creator><creator>Wang, Haibin</creator><creator>Dan, Bo</creator><creator>Lu, Yu</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220801</creationdate><title>Deep Supervised Cross-modal Hashing for Ship Image Retrieval</title><author>Guo, Jiaen ; Wang, Haibin ; Dan, Bo ; Lu, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3283-f71eb84910a0d0d13d4fefd312d15eac7e9870d5275b06a77d471b2ff4aea3213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Data analysis</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Physics</topic><topic>Remote sensing</topic><topic>Retrieval</topic><topic>Satellite imagery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jiaen</creatorcontrib><creatorcontrib>Wang, Haibin</creatorcontrib><creatorcontrib>Dan, Bo</creatorcontrib><creatorcontrib>Lu, Yu</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Jiaen</au><au>Wang, Haibin</au><au>Dan, Bo</au><au>Lu, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Supervised Cross-modal Hashing for Ship Image Retrieval</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>2320</volume><issue>1</issue><spage>12023</spage><pages>12023-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The retrieval of multimodal ship images obtained by remote sensing satellites is an important content of remote sensing data analysis, which is of great significance to improve the ability of marine monitoring. In this paper, We propose a novel cross-modal ship image retrieval method, called Deep Supervised Cross-modal Hashing(DSCMH). It consists of a feature learning part and a hash learning part used for feature extraction and hash code generation separately, both two parts have modality-invariant constraints to keep the cross-modal invariability, and the label information is also brought to supervise the above process. Furthermore, we design a class attention module based on the cross-modal class center to strengthen class discrimination. The experiment results show that the proposed method can effectively improve the cross-modal retrieval accuracy of ship images and is better than several state-of-the-art methods.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2320/1/012023</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2022-08, Vol.2320 (1), p.12023 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2701116676 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Institute of Physics Open Access Journal Titles; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Data analysis Feature extraction Machine learning Physics Remote sensing Retrieval Satellite imagery |
title | Deep Supervised Cross-modal Hashing for Ship Image Retrieval |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T12%3A15%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Supervised%20Cross-modal%20Hashing%20for%20Ship%20Image%20Retrieval&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Guo,%20Jiaen&rft.date=2022-08-01&rft.volume=2320&rft.issue=1&rft.spage=12023&rft.pages=12023-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2320/1/012023&rft_dat=%3Cproquest_cross%3E2701116676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2701116676&rft_id=info:pmid/&rfr_iscdi=true |