Path integral molecular dynamics for thermodynamics and Green’s function of ultracold spinor bosons

Most recently, the path integral molecular dynamics has been successfully used to consider the thermodynamics of single-component identical bosons and fermions. In this work, the path integral molecular dynamics is developed to simulate thermodynamics, Green’s function, and momentum distribution of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2022-08, Vol.157 (6), p.064110-064110
Hauptverfasser: Yu, Yongle, Liu, Shujuan, Xiong, Hongwei, Xiong, Yunuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 064110
container_issue 6
container_start_page 064110
container_title The Journal of chemical physics
container_volume 157
creator Yu, Yongle
Liu, Shujuan
Xiong, Hongwei
Xiong, Yunuo
description Most recently, the path integral molecular dynamics has been successfully used to consider the thermodynamics of single-component identical bosons and fermions. In this work, the path integral molecular dynamics is developed to simulate thermodynamics, Green’s function, and momentum distribution of two-component bosons in three dimensions. As an example of our general method, we consider the thermodynamics of up to 16 bosons in a three-dimensional harmonic trap. For noninteracting spinor bosons, our simulation shows a bump in the heat capacity. As the repulsive interaction strength increases, however, we find the gradual disappearance of the bump in the heat capacity. We believe that this simulation result can be tested by ultracold spinor bosons with optical lattices and magnetic-field Feshbach resonance to tune the inter-particle interaction. We also calculate Green’s function and momentum distribution of spinor bosons. Our work facilitates the exact numerical simulation of spinor bosons, whose property is one of the major problems in ultracold Bose gases.
doi_str_mv 10.1063/5.0102460
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2700881234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2702181354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-76c28b7d88e496ea93971237a3a2787a19efaa876c549b465b46f7824d98ca23</originalsourceid><addsrcrecordid>eNqd0MtKAzEUBuAgCtbqwjcIuFFhapK5JFlK0SoUdNH9cJrJ2CmZZExmBHe-hq_nk5ihRcGli3AgfOfCj9A5JTNKivQmnxFKWFaQAzShRMiEF5IcogkhjCayIMUxOglhSwihnGUTpJ-h3-DG9vrFg8GtM1oNBjyu3i20jQq4dh73G-1b9_MFtsILr7X9-viMYLCqb5zFrsaD6T0oZyocusbGzrULzoZTdFSDCfpsX6dodX-3mj8ky6fF4_x2mai0IH28VTGx5pUQOpOFBplKTlnKIQXGBQcqdQ0gIsszuc6KPL6aC5ZVUihg6RRd7sZ23r0OOvRl2wSljQGr3RBKxmMKgqZ5FunFH7p1g7fxuFERIeLeUV3tlPIuBK_rsvNNC_69pKQc8y7zcp93tNc7G1TTwxjI__Cb87-w7Ko6_Qa_lY8q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700881234</pqid></control><display><type>article</type><title>Path integral molecular dynamics for thermodynamics and Green’s function of ultracold spinor bosons</title><source>AIP Journals</source><source>Alma/SFX Local Collection</source><creator>Yu, Yongle ; Liu, Shujuan ; Xiong, Hongwei ; Xiong, Yunuo</creator><creatorcontrib>Yu, Yongle ; Liu, Shujuan ; Xiong, Hongwei ; Xiong, Yunuo</creatorcontrib><description>Most recently, the path integral molecular dynamics has been successfully used to consider the thermodynamics of single-component identical bosons and fermions. In this work, the path integral molecular dynamics is developed to simulate thermodynamics, Green’s function, and momentum distribution of two-component bosons in three dimensions. As an example of our general method, we consider the thermodynamics of up to 16 bosons in a three-dimensional harmonic trap. For noninteracting spinor bosons, our simulation shows a bump in the heat capacity. As the repulsive interaction strength increases, however, we find the gradual disappearance of the bump in the heat capacity. We believe that this simulation result can be tested by ultracold spinor bosons with optical lattices and magnetic-field Feshbach resonance to tune the inter-particle interaction. We also calculate Green’s function and momentum distribution of spinor bosons. Our work facilitates the exact numerical simulation of spinor bosons, whose property is one of the major problems in ultracold Bose gases.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0102460</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Bosons ; Fermions ; Green's functions ; Magnetic resonance ; Molecular dynamics ; Momentum ; Optical lattices ; Particle interactions ; Physics ; Simulation ; Specific heat ; Thermodynamics</subject><ispartof>The Journal of chemical physics, 2022-08, Vol.157 (6), p.064110-064110</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-76c28b7d88e496ea93971237a3a2787a19efaa876c549b465b46f7824d98ca23</citedby><cites>FETCH-LOGICAL-c360t-76c28b7d88e496ea93971237a3a2787a19efaa876c549b465b46f7824d98ca23</cites><orcidid>0000-0003-4798-1996 ; 0000-0003-2668-5370 ; 0000-0002-9166-2426 ; 0000-0001-9858-2368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0102460$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Yu, Yongle</creatorcontrib><creatorcontrib>Liu, Shujuan</creatorcontrib><creatorcontrib>Xiong, Hongwei</creatorcontrib><creatorcontrib>Xiong, Yunuo</creatorcontrib><title>Path integral molecular dynamics for thermodynamics and Green’s function of ultracold spinor bosons</title><title>The Journal of chemical physics</title><description>Most recently, the path integral molecular dynamics has been successfully used to consider the thermodynamics of single-component identical bosons and fermions. In this work, the path integral molecular dynamics is developed to simulate thermodynamics, Green’s function, and momentum distribution of two-component bosons in three dimensions. As an example of our general method, we consider the thermodynamics of up to 16 bosons in a three-dimensional harmonic trap. For noninteracting spinor bosons, our simulation shows a bump in the heat capacity. As the repulsive interaction strength increases, however, we find the gradual disappearance of the bump in the heat capacity. We believe that this simulation result can be tested by ultracold spinor bosons with optical lattices and magnetic-field Feshbach resonance to tune the inter-particle interaction. We also calculate Green’s function and momentum distribution of spinor bosons. Our work facilitates the exact numerical simulation of spinor bosons, whose property is one of the major problems in ultracold Bose gases.</description><subject>Bosons</subject><subject>Fermions</subject><subject>Green's functions</subject><subject>Magnetic resonance</subject><subject>Molecular dynamics</subject><subject>Momentum</subject><subject>Optical lattices</subject><subject>Particle interactions</subject><subject>Physics</subject><subject>Simulation</subject><subject>Specific heat</subject><subject>Thermodynamics</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqd0MtKAzEUBuAgCtbqwjcIuFFhapK5JFlK0SoUdNH9cJrJ2CmZZExmBHe-hq_nk5ihRcGli3AgfOfCj9A5JTNKivQmnxFKWFaQAzShRMiEF5IcogkhjCayIMUxOglhSwihnGUTpJ-h3-DG9vrFg8GtM1oNBjyu3i20jQq4dh73G-1b9_MFtsILr7X9-viMYLCqb5zFrsaD6T0oZyocusbGzrULzoZTdFSDCfpsX6dodX-3mj8ky6fF4_x2mai0IH28VTGx5pUQOpOFBplKTlnKIQXGBQcqdQ0gIsszuc6KPL6aC5ZVUihg6RRd7sZ23r0OOvRl2wSljQGr3RBKxmMKgqZ5FunFH7p1g7fxuFERIeLeUV3tlPIuBK_rsvNNC_69pKQc8y7zcp93tNc7G1TTwxjI__Cb87-w7Ko6_Qa_lY8q</recordid><startdate>20220814</startdate><enddate>20220814</enddate><creator>Yu, Yongle</creator><creator>Liu, Shujuan</creator><creator>Xiong, Hongwei</creator><creator>Xiong, Yunuo</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4798-1996</orcidid><orcidid>https://orcid.org/0000-0003-2668-5370</orcidid><orcidid>https://orcid.org/0000-0002-9166-2426</orcidid><orcidid>https://orcid.org/0000-0001-9858-2368</orcidid></search><sort><creationdate>20220814</creationdate><title>Path integral molecular dynamics for thermodynamics and Green’s function of ultracold spinor bosons</title><author>Yu, Yongle ; Liu, Shujuan ; Xiong, Hongwei ; Xiong, Yunuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-76c28b7d88e496ea93971237a3a2787a19efaa876c549b465b46f7824d98ca23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bosons</topic><topic>Fermions</topic><topic>Green's functions</topic><topic>Magnetic resonance</topic><topic>Molecular dynamics</topic><topic>Momentum</topic><topic>Optical lattices</topic><topic>Particle interactions</topic><topic>Physics</topic><topic>Simulation</topic><topic>Specific heat</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Yongle</creatorcontrib><creatorcontrib>Liu, Shujuan</creatorcontrib><creatorcontrib>Xiong, Hongwei</creatorcontrib><creatorcontrib>Xiong, Yunuo</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Yongle</au><au>Liu, Shujuan</au><au>Xiong, Hongwei</au><au>Xiong, Yunuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Path integral molecular dynamics for thermodynamics and Green’s function of ultracold spinor bosons</atitle><jtitle>The Journal of chemical physics</jtitle><date>2022-08-14</date><risdate>2022</risdate><volume>157</volume><issue>6</issue><spage>064110</spage><epage>064110</epage><pages>064110-064110</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Most recently, the path integral molecular dynamics has been successfully used to consider the thermodynamics of single-component identical bosons and fermions. In this work, the path integral molecular dynamics is developed to simulate thermodynamics, Green’s function, and momentum distribution of two-component bosons in three dimensions. As an example of our general method, we consider the thermodynamics of up to 16 bosons in a three-dimensional harmonic trap. For noninteracting spinor bosons, our simulation shows a bump in the heat capacity. As the repulsive interaction strength increases, however, we find the gradual disappearance of the bump in the heat capacity. We believe that this simulation result can be tested by ultracold spinor bosons with optical lattices and magnetic-field Feshbach resonance to tune the inter-particle interaction. We also calculate Green’s function and momentum distribution of spinor bosons. Our work facilitates the exact numerical simulation of spinor bosons, whose property is one of the major problems in ultracold Bose gases.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0102460</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4798-1996</orcidid><orcidid>https://orcid.org/0000-0003-2668-5370</orcidid><orcidid>https://orcid.org/0000-0002-9166-2426</orcidid><orcidid>https://orcid.org/0000-0001-9858-2368</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2022-08, Vol.157 (6), p.064110-064110
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_journals_2700881234
source AIP Journals; Alma/SFX Local Collection
subjects Bosons
Fermions
Green's functions
Magnetic resonance
Molecular dynamics
Momentum
Optical lattices
Particle interactions
Physics
Simulation
Specific heat
Thermodynamics
title Path integral molecular dynamics for thermodynamics and Green’s function of ultracold spinor bosons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A41%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Path%20integral%20molecular%20dynamics%20for%20thermodynamics%20and%20Green%E2%80%99s%20function%20of%20ultracold%20spinor%20bosons&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Yu,%20Yongle&rft.date=2022-08-14&rft.volume=157&rft.issue=6&rft.spage=064110&rft.epage=064110&rft.pages=064110-064110&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0102460&rft_dat=%3Cproquest_scita%3E2702181354%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700881234&rft_id=info:pmid/&rfr_iscdi=true