Fermionic wave functions from neural-network constrained hidden states

We introduce a systematically improvable family of variational wave functions for the simulation of strongly correlated fermionic systems. This family consists of Slater determinants in an augmented Hilbert space involving "hidden" additional fermionic degrees of freedom. These determinant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2022-08, Vol.119 (32)
Hauptverfasser: Moreno, Javier Robledo, Carleo, Giuseppe, Georges, Antoine, Stokes, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a systematically improvable family of variational wave functions for the simulation of strongly correlated fermionic systems. This family consists of Slater determinants in an augmented Hilbert space involving "hidden" additional fermionic degrees of freedom. These determinants are projected onto the physical Hilbert space through a constraint that is optimized, together with the single-particle orbitals, using a neural network parameterization. This construction draws inspiration from the success of hidden-particle representations but overcomes the limitations associated with the mean-field treatment of the constraint often used in this context. Our construction provides an extremely expressive family of wave functions, which is proved to be universal. We apply this construction to the ground-state properties of the Hubbard model on the square lattice, achieving levels of accuracy that are competitive with those of state-of-the-art variational methods.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.212205911