Automatic Vehicle Identification and Classification Model Using the YOLOv3 Algorithm for a Toll Management System

Vehicle identification and classification are some of the major tasks in the areas of toll management and traffic management, where these smart transportation systems are implemented by integrating various information communication technologies and multiple types of hardware. The currently shifting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-08, Vol.14 (15), p.9163
Hauptverfasser: Rajput, Sudhir Kumar, Patni, Jagdish Chandra, Alshamrani, Sultan S., Chaudhari, Vaibhav, Dumka, Ankur, Singh, Rajesh, Rashid, Mamoon, Gehlot, Anita, AlGhamdi, Ahmed Saeed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page 9163
container_title Sustainability
container_volume 14
creator Rajput, Sudhir Kumar
Patni, Jagdish Chandra
Alshamrani, Sultan S.
Chaudhari, Vaibhav
Dumka, Ankur
Singh, Rajesh
Rashid, Mamoon
Gehlot, Anita
AlGhamdi, Ahmed Saeed
description Vehicle identification and classification are some of the major tasks in the areas of toll management and traffic management, where these smart transportation systems are implemented by integrating various information communication technologies and multiple types of hardware. The currently shifting era toward artificial intelligence has also motivated the implementation of vehicle identification and classification using AI-based techniques, such as machine learning, artificial neural network and deep learning. In this research, we used the deep learning YOLOv3 algorithm and trained it on a custom dataset of vehicles that included different vehicle classes as per the Indian Government’s recommendation to implement the automatic vehicle identification and classification for use in the toll management system deployed at toll plazas. For faster processing of the test videos, the frames were saved at a certain interval and then the saved frames were passed through the algorithm. Apart from toll plazas, we also tested the algorithm for vehicle identification and classification on highways and urban areas. Implementing automatic vehicle identification and classification using traditional techniques is a highly proprietary endeavor. Since YOLOv3 is an open-standard-based algorithm, it paves the way to developing sustainable solutions in the area of smart transportation.
doi_str_mv 10.3390/su14159163
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2700788467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700788467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-fe19f106e11aac983da8fc20623060981c66a587dab0e4384e7c4dd7f49a6df93</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWGo3_oKAO2E0mczksSzFR6GlC1vB1RDzaFMykzbJCP33jijUs7mHw8e5cAC4xeiBEIEeU48rXAtMyQUYlYjhAqMaXf7z12CS0h4NIgQP4Agcp30OrcxOwXezc8obONemy846NaShg7LTcOZlSudoGbTxcJNct4V5Z-DHarH6InDqtyG6vGuhDRFKuA7ew6Xs5Na0QyV8O6Vs2htwZaVPZvJ3x2Dz_LSevRaL1ct8Nl0UqhR1LqzBwmJEDcZSKsGJltyqEtGSIIoEx4pSWXOm5ScyFeGVYarSmtlKSKqtIGNw99t7iOHYm5SbfehjN7xsSoYQ47yibKDufykVQ0rR2OYQXSvjqcGo-Vm1Oa9KvgE50moQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700788467</pqid></control><display><type>article</type><title>Automatic Vehicle Identification and Classification Model Using the YOLOv3 Algorithm for a Toll Management System</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Rajput, Sudhir Kumar ; Patni, Jagdish Chandra ; Alshamrani, Sultan S. ; Chaudhari, Vaibhav ; Dumka, Ankur ; Singh, Rajesh ; Rashid, Mamoon ; Gehlot, Anita ; AlGhamdi, Ahmed Saeed</creator><creatorcontrib>Rajput, Sudhir Kumar ; Patni, Jagdish Chandra ; Alshamrani, Sultan S. ; Chaudhari, Vaibhav ; Dumka, Ankur ; Singh, Rajesh ; Rashid, Mamoon ; Gehlot, Anita ; AlGhamdi, Ahmed Saeed</creatorcontrib><description>Vehicle identification and classification are some of the major tasks in the areas of toll management and traffic management, where these smart transportation systems are implemented by integrating various information communication technologies and multiple types of hardware. The currently shifting era toward artificial intelligence has also motivated the implementation of vehicle identification and classification using AI-based techniques, such as machine learning, artificial neural network and deep learning. In this research, we used the deep learning YOLOv3 algorithm and trained it on a custom dataset of vehicles that included different vehicle classes as per the Indian Government’s recommendation to implement the automatic vehicle identification and classification for use in the toll management system deployed at toll plazas. For faster processing of the test videos, the frames were saved at a certain interval and then the saved frames were passed through the algorithm. Apart from toll plazas, we also tested the algorithm for vehicle identification and classification on highways and urban areas. Implementing automatic vehicle identification and classification using traditional techniques is a highly proprietary endeavor. Since YOLOv3 is an open-standard-based algorithm, it paves the way to developing sustainable solutions in the area of smart transportation.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su14159163</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Classification ; Deep learning ; Fees &amp; charges ; Highways ; Identification ; Neural networks ; Roads &amp; highways ; Sensors ; Spread spectrum ; Sustainability ; Toll roads ; Tolls ; Traffic congestion ; Traffic management ; Transportation planning ; Transportation systems ; Urban areas ; Vehicle identification ; Vehicles</subject><ispartof>Sustainability, 2022-08, Vol.14 (15), p.9163</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-fe19f106e11aac983da8fc20623060981c66a587dab0e4384e7c4dd7f49a6df93</citedby><cites>FETCH-LOGICAL-c295t-fe19f106e11aac983da8fc20623060981c66a587dab0e4384e7c4dd7f49a6df93</cites><orcidid>0000-0002-9165-7600 ; 0000-0002-3164-8905 ; 0000-0002-8302-4571 ; 0000-0001-8194-9354 ; 0000-0001-5781-2147 ; 0000-0001-6463-9581</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rajput, Sudhir Kumar</creatorcontrib><creatorcontrib>Patni, Jagdish Chandra</creatorcontrib><creatorcontrib>Alshamrani, Sultan S.</creatorcontrib><creatorcontrib>Chaudhari, Vaibhav</creatorcontrib><creatorcontrib>Dumka, Ankur</creatorcontrib><creatorcontrib>Singh, Rajesh</creatorcontrib><creatorcontrib>Rashid, Mamoon</creatorcontrib><creatorcontrib>Gehlot, Anita</creatorcontrib><creatorcontrib>AlGhamdi, Ahmed Saeed</creatorcontrib><title>Automatic Vehicle Identification and Classification Model Using the YOLOv3 Algorithm for a Toll Management System</title><title>Sustainability</title><description>Vehicle identification and classification are some of the major tasks in the areas of toll management and traffic management, where these smart transportation systems are implemented by integrating various information communication technologies and multiple types of hardware. The currently shifting era toward artificial intelligence has also motivated the implementation of vehicle identification and classification using AI-based techniques, such as machine learning, artificial neural network and deep learning. In this research, we used the deep learning YOLOv3 algorithm and trained it on a custom dataset of vehicles that included different vehicle classes as per the Indian Government’s recommendation to implement the automatic vehicle identification and classification for use in the toll management system deployed at toll plazas. For faster processing of the test videos, the frames were saved at a certain interval and then the saved frames were passed through the algorithm. Apart from toll plazas, we also tested the algorithm for vehicle identification and classification on highways and urban areas. Implementing automatic vehicle identification and classification using traditional techniques is a highly proprietary endeavor. Since YOLOv3 is an open-standard-based algorithm, it paves the way to developing sustainable solutions in the area of smart transportation.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Deep learning</subject><subject>Fees &amp; charges</subject><subject>Highways</subject><subject>Identification</subject><subject>Neural networks</subject><subject>Roads &amp; highways</subject><subject>Sensors</subject><subject>Spread spectrum</subject><subject>Sustainability</subject><subject>Toll roads</subject><subject>Tolls</subject><subject>Traffic congestion</subject><subject>Traffic management</subject><subject>Transportation planning</subject><subject>Transportation systems</subject><subject>Urban areas</subject><subject>Vehicle identification</subject><subject>Vehicles</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkEtLAzEUhYMoWGo3_oKAO2E0mczksSzFR6GlC1vB1RDzaFMykzbJCP33jijUs7mHw8e5cAC4xeiBEIEeU48rXAtMyQUYlYjhAqMaXf7z12CS0h4NIgQP4Agcp30OrcxOwXezc8obONemy846NaShg7LTcOZlSudoGbTxcJNct4V5Z-DHarH6InDqtyG6vGuhDRFKuA7ew6Xs5Na0QyV8O6Vs2htwZaVPZvJ3x2Dz_LSevRaL1ct8Nl0UqhR1LqzBwmJEDcZSKsGJltyqEtGSIIoEx4pSWXOm5ScyFeGVYarSmtlKSKqtIGNw99t7iOHYm5SbfehjN7xsSoYQ47yibKDufykVQ0rR2OYQXSvjqcGo-Vm1Oa9KvgE50moQ</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Rajput, Sudhir Kumar</creator><creator>Patni, Jagdish Chandra</creator><creator>Alshamrani, Sultan S.</creator><creator>Chaudhari, Vaibhav</creator><creator>Dumka, Ankur</creator><creator>Singh, Rajesh</creator><creator>Rashid, Mamoon</creator><creator>Gehlot, Anita</creator><creator>AlGhamdi, Ahmed Saeed</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9165-7600</orcidid><orcidid>https://orcid.org/0000-0002-3164-8905</orcidid><orcidid>https://orcid.org/0000-0002-8302-4571</orcidid><orcidid>https://orcid.org/0000-0001-8194-9354</orcidid><orcidid>https://orcid.org/0000-0001-5781-2147</orcidid><orcidid>https://orcid.org/0000-0001-6463-9581</orcidid></search><sort><creationdate>20220801</creationdate><title>Automatic Vehicle Identification and Classification Model Using the YOLOv3 Algorithm for a Toll Management System</title><author>Rajput, Sudhir Kumar ; Patni, Jagdish Chandra ; Alshamrani, Sultan S. ; Chaudhari, Vaibhav ; Dumka, Ankur ; Singh, Rajesh ; Rashid, Mamoon ; Gehlot, Anita ; AlGhamdi, Ahmed Saeed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-fe19f106e11aac983da8fc20623060981c66a587dab0e4384e7c4dd7f49a6df93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Deep learning</topic><topic>Fees &amp; charges</topic><topic>Highways</topic><topic>Identification</topic><topic>Neural networks</topic><topic>Roads &amp; highways</topic><topic>Sensors</topic><topic>Spread spectrum</topic><topic>Sustainability</topic><topic>Toll roads</topic><topic>Tolls</topic><topic>Traffic congestion</topic><topic>Traffic management</topic><topic>Transportation planning</topic><topic>Transportation systems</topic><topic>Urban areas</topic><topic>Vehicle identification</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajput, Sudhir Kumar</creatorcontrib><creatorcontrib>Patni, Jagdish Chandra</creatorcontrib><creatorcontrib>Alshamrani, Sultan S.</creatorcontrib><creatorcontrib>Chaudhari, Vaibhav</creatorcontrib><creatorcontrib>Dumka, Ankur</creatorcontrib><creatorcontrib>Singh, Rajesh</creatorcontrib><creatorcontrib>Rashid, Mamoon</creatorcontrib><creatorcontrib>Gehlot, Anita</creatorcontrib><creatorcontrib>AlGhamdi, Ahmed Saeed</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajput, Sudhir Kumar</au><au>Patni, Jagdish Chandra</au><au>Alshamrani, Sultan S.</au><au>Chaudhari, Vaibhav</au><au>Dumka, Ankur</au><au>Singh, Rajesh</au><au>Rashid, Mamoon</au><au>Gehlot, Anita</au><au>AlGhamdi, Ahmed Saeed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Vehicle Identification and Classification Model Using the YOLOv3 Algorithm for a Toll Management System</atitle><jtitle>Sustainability</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>14</volume><issue>15</issue><spage>9163</spage><pages>9163-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Vehicle identification and classification are some of the major tasks in the areas of toll management and traffic management, where these smart transportation systems are implemented by integrating various information communication technologies and multiple types of hardware. The currently shifting era toward artificial intelligence has also motivated the implementation of vehicle identification and classification using AI-based techniques, such as machine learning, artificial neural network and deep learning. In this research, we used the deep learning YOLOv3 algorithm and trained it on a custom dataset of vehicles that included different vehicle classes as per the Indian Government’s recommendation to implement the automatic vehicle identification and classification for use in the toll management system deployed at toll plazas. For faster processing of the test videos, the frames were saved at a certain interval and then the saved frames were passed through the algorithm. Apart from toll plazas, we also tested the algorithm for vehicle identification and classification on highways and urban areas. Implementing automatic vehicle identification and classification using traditional techniques is a highly proprietary endeavor. Since YOLOv3 is an open-standard-based algorithm, it paves the way to developing sustainable solutions in the area of smart transportation.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su14159163</doi><orcidid>https://orcid.org/0000-0002-9165-7600</orcidid><orcidid>https://orcid.org/0000-0002-3164-8905</orcidid><orcidid>https://orcid.org/0000-0002-8302-4571</orcidid><orcidid>https://orcid.org/0000-0001-8194-9354</orcidid><orcidid>https://orcid.org/0000-0001-5781-2147</orcidid><orcidid>https://orcid.org/0000-0001-6463-9581</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2022-08, Vol.14 (15), p.9163
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2700788467
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Algorithms
Artificial intelligence
Classification
Deep learning
Fees & charges
Highways
Identification
Neural networks
Roads & highways
Sensors
Spread spectrum
Sustainability
Toll roads
Tolls
Traffic congestion
Traffic management
Transportation planning
Transportation systems
Urban areas
Vehicle identification
Vehicles
title Automatic Vehicle Identification and Classification Model Using the YOLOv3 Algorithm for a Toll Management System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A16%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Vehicle%20Identification%20and%20Classification%20Model%20Using%20the%20YOLOv3%20Algorithm%20for%20a%20Toll%20Management%20System&rft.jtitle=Sustainability&rft.au=Rajput,%20Sudhir%20Kumar&rft.date=2022-08-01&rft.volume=14&rft.issue=15&rft.spage=9163&rft.pages=9163-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su14159163&rft_dat=%3Cproquest_cross%3E2700788467%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700788467&rft_id=info:pmid/&rfr_iscdi=true