Electrostatic focusing of cold and heavy molecules for the ACME electron EDM search
The current best upper limit for electron electric dipole moment (EDM), | d e | < 1.1 × 10 −29 e cm (90% confidence), was set by the ACME Collaboration in 2018. The ACME experiment uses a spin-precession measurement in a cold beam of thorium monoxide (ThO) molecules to detect d e . An improvement...
Gespeichert in:
Veröffentlicht in: | New journal of physics 2022-07, Vol.24 (7), p.73043 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 73043 |
container_title | New journal of physics |
container_volume | 24 |
creator | Wu, X Hu, P Han, Z Ang, D G Meisenhelder, C Gabrielse, G Doyle, J M DeMille, D |
description | The current best upper limit for electron electric dipole moment (EDM), |
d
e
| < 1.1 × 10
−29
e cm (90% confidence), was set by the ACME Collaboration in 2018. The ACME experiment uses a spin-precession measurement in a cold beam of thorium monoxide (ThO) molecules to detect
d
e
. An improvement in statistical uncertainty would be possible with more efficient use of molecules from the cryogenic buffer gas beam source. Here, we demonstrate electrostatic focusing of the ThO beam with a hexapole lens. This results in a factor of 16 enhancement in the molecular flux detectable downstream, in a beamline similar to that built for the next generation of ACME. We also demonstrate an upgraded rotational cooling scheme that increases the ground state population by 3.5 times compared to no cooling, consistent with expectations and a factor of 1.4 larger than previously in ACME. When combined with other demonstrated improvements, we project over an order of magnitude improvement in statistical sensitivity for the next generation ACME electron EDM search. |
doi_str_mv | 10.1088/1367-2630/ac8014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2700786526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_654f18bc2d9d44b4ba6e0b01eb9e4a4e</doaj_id><sourcerecordid>2700786526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-548d163cfa31d38f171d0f8bc5f11ea6e09768b30f76a1bc5132aa3c7b7ee3ed3</originalsourceid><addsrcrecordid>eNp9kc1PGzEQxa2qSE0D9x4t9dBLQzxr79o5ojR8SCAOwNny2uNko816a2-Q-O9xWAQcECdbT-_9PH5DyC9gp8CUmgOv5KyoOJsbqxiIb2TyJn3_cP9Bfqa0ZQxAFcWE3K1atEMMaTBDY6kPdp-abk2Dpza0jprO0Q2axye6C9m5bzFlU6TDBunZ8mZFccx3dPXvhiY00W6OyZE3bcKT13NKHs5X98vL2fXtxdXy7HpmSxDDrBTKQcWtNxwcVx4kOOZVbUsPgKZCtpCVqjnzsjKQZeCFMdzKWiJydHxKrkauC2ar-9jsTHzSwTT6RQhxrU3Mv2pRV6XwkNGFWzghalEf8DUDrBcojMDM-j2y-hj-7zENehv2scvj60IyJlVV5vamhI0umxtLEf3bq8D0YQ360LM-9KzHNeTI3zHShP6d-YX9zyf2btvrQmipmeRMcN07z58B7qSUvA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700786526</pqid></control><display><type>article</type><title>Electrostatic focusing of cold and heavy molecules for the ACME electron EDM search</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wu, X ; Hu, P ; Han, Z ; Ang, D G ; Meisenhelder, C ; Gabrielse, G ; Doyle, J M ; DeMille, D</creator><creatorcontrib>Wu, X ; Hu, P ; Han, Z ; Ang, D G ; Meisenhelder, C ; Gabrielse, G ; Doyle, J M ; DeMille, D</creatorcontrib><description>The current best upper limit for electron electric dipole moment (EDM), |
d
e
| < 1.1 × 10
−29
e cm (90% confidence), was set by the ACME Collaboration in 2018. The ACME experiment uses a spin-precession measurement in a cold beam of thorium monoxide (ThO) molecules to detect
d
e
. An improvement in statistical uncertainty would be possible with more efficient use of molecules from the cryogenic buffer gas beam source. Here, we demonstrate electrostatic focusing of the ThO beam with a hexapole lens. This results in a factor of 16 enhancement in the molecular flux detectable downstream, in a beamline similar to that built for the next generation of ACME. We also demonstrate an upgraded rotational cooling scheme that increases the ground state population by 3.5 times compared to no cooling, consistent with expectations and a factor of 1.4 larger than previously in ACME. When combined with other demonstrated improvements, we project over an order of magnitude improvement in statistical sensitivity for the next generation ACME electron EDM search.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ac8014</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Cold ; cold polar molecule ; Cooling ; Dipole moments ; Electric dipoles ; electron EDM ; electrostatic lens ; Experiments ; Physics ; precision measurement ; Thorium</subject><ispartof>New journal of physics, 2022-07, Vol.24 (7), p.73043</ispartof><rights>2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-548d163cfa31d38f171d0f8bc5f11ea6e09768b30f76a1bc5132aa3c7b7ee3ed3</citedby><cites>FETCH-LOGICAL-c514t-548d163cfa31d38f171d0f8bc5f11ea6e09768b30f76a1bc5132aa3c7b7ee3ed3</cites><orcidid>0000-0002-6646-820X ; 0000-0002-7501-7507 ; 0000-0002-0339-5672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/ac8014/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Wu, X</creatorcontrib><creatorcontrib>Hu, P</creatorcontrib><creatorcontrib>Han, Z</creatorcontrib><creatorcontrib>Ang, D G</creatorcontrib><creatorcontrib>Meisenhelder, C</creatorcontrib><creatorcontrib>Gabrielse, G</creatorcontrib><creatorcontrib>Doyle, J M</creatorcontrib><creatorcontrib>DeMille, D</creatorcontrib><title>Electrostatic focusing of cold and heavy molecules for the ACME electron EDM search</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>The current best upper limit for electron electric dipole moment (EDM), |
d
e
| < 1.1 × 10
−29
e cm (90% confidence), was set by the ACME Collaboration in 2018. The ACME experiment uses a spin-precession measurement in a cold beam of thorium monoxide (ThO) molecules to detect
d
e
. An improvement in statistical uncertainty would be possible with more efficient use of molecules from the cryogenic buffer gas beam source. Here, we demonstrate electrostatic focusing of the ThO beam with a hexapole lens. This results in a factor of 16 enhancement in the molecular flux detectable downstream, in a beamline similar to that built for the next generation of ACME. We also demonstrate an upgraded rotational cooling scheme that increases the ground state population by 3.5 times compared to no cooling, consistent with expectations and a factor of 1.4 larger than previously in ACME. When combined with other demonstrated improvements, we project over an order of magnitude improvement in statistical sensitivity for the next generation ACME electron EDM search.</description><subject>Cold</subject><subject>cold polar molecule</subject><subject>Cooling</subject><subject>Dipole moments</subject><subject>Electric dipoles</subject><subject>electron EDM</subject><subject>electrostatic lens</subject><subject>Experiments</subject><subject>Physics</subject><subject>precision measurement</subject><subject>Thorium</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1PGzEQxa2qSE0D9x4t9dBLQzxr79o5ojR8SCAOwNny2uNko816a2-Q-O9xWAQcECdbT-_9PH5DyC9gp8CUmgOv5KyoOJsbqxiIb2TyJn3_cP9Bfqa0ZQxAFcWE3K1atEMMaTBDY6kPdp-abk2Dpza0jprO0Q2axye6C9m5bzFlU6TDBunZ8mZFccx3dPXvhiY00W6OyZE3bcKT13NKHs5X98vL2fXtxdXy7HpmSxDDrBTKQcWtNxwcVx4kOOZVbUsPgKZCtpCVqjnzsjKQZeCFMdzKWiJydHxKrkauC2ar-9jsTHzSwTT6RQhxrU3Mv2pRV6XwkNGFWzghalEf8DUDrBcojMDM-j2y-hj-7zENehv2scvj60IyJlVV5vamhI0umxtLEf3bq8D0YQ360LM-9KzHNeTI3zHShP6d-YX9zyf2btvrQmipmeRMcN07z58B7qSUvA</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Wu, X</creator><creator>Hu, P</creator><creator>Han, Z</creator><creator>Ang, D G</creator><creator>Meisenhelder, C</creator><creator>Gabrielse, G</creator><creator>Doyle, J M</creator><creator>DeMille, D</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6646-820X</orcidid><orcidid>https://orcid.org/0000-0002-7501-7507</orcidid><orcidid>https://orcid.org/0000-0002-0339-5672</orcidid></search><sort><creationdate>20220701</creationdate><title>Electrostatic focusing of cold and heavy molecules for the ACME electron EDM search</title><author>Wu, X ; Hu, P ; Han, Z ; Ang, D G ; Meisenhelder, C ; Gabrielse, G ; Doyle, J M ; DeMille, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-548d163cfa31d38f171d0f8bc5f11ea6e09768b30f76a1bc5132aa3c7b7ee3ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cold</topic><topic>cold polar molecule</topic><topic>Cooling</topic><topic>Dipole moments</topic><topic>Electric dipoles</topic><topic>electron EDM</topic><topic>electrostatic lens</topic><topic>Experiments</topic><topic>Physics</topic><topic>precision measurement</topic><topic>Thorium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, X</creatorcontrib><creatorcontrib>Hu, P</creatorcontrib><creatorcontrib>Han, Z</creatorcontrib><creatorcontrib>Ang, D G</creatorcontrib><creatorcontrib>Meisenhelder, C</creatorcontrib><creatorcontrib>Gabrielse, G</creatorcontrib><creatorcontrib>Doyle, J M</creatorcontrib><creatorcontrib>DeMille, D</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, X</au><au>Hu, P</au><au>Han, Z</au><au>Ang, D G</au><au>Meisenhelder, C</au><au>Gabrielse, G</au><au>Doyle, J M</au><au>DeMille, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrostatic focusing of cold and heavy molecules for the ACME electron EDM search</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>24</volume><issue>7</issue><spage>73043</spage><pages>73043-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>The current best upper limit for electron electric dipole moment (EDM), |
d
e
| < 1.1 × 10
−29
e cm (90% confidence), was set by the ACME Collaboration in 2018. The ACME experiment uses a spin-precession measurement in a cold beam of thorium monoxide (ThO) molecules to detect
d
e
. An improvement in statistical uncertainty would be possible with more efficient use of molecules from the cryogenic buffer gas beam source. Here, we demonstrate electrostatic focusing of the ThO beam with a hexapole lens. This results in a factor of 16 enhancement in the molecular flux detectable downstream, in a beamline similar to that built for the next generation of ACME. We also demonstrate an upgraded rotational cooling scheme that increases the ground state population by 3.5 times compared to no cooling, consistent with expectations and a factor of 1.4 larger than previously in ACME. When combined with other demonstrated improvements, we project over an order of magnitude improvement in statistical sensitivity for the next generation ACME electron EDM search.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ac8014</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6646-820X</orcidid><orcidid>https://orcid.org/0000-0002-7501-7507</orcidid><orcidid>https://orcid.org/0000-0002-0339-5672</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-2630 |
ispartof | New journal of physics, 2022-07, Vol.24 (7), p.73043 |
issn | 1367-2630 1367-2630 |
language | eng |
recordid | cdi_proquest_journals_2700786526 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Cold cold polar molecule Cooling Dipole moments Electric dipoles electron EDM electrostatic lens Experiments Physics precision measurement Thorium |
title | Electrostatic focusing of cold and heavy molecules for the ACME electron EDM search |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrostatic%20focusing%20of%20cold%20and%20heavy%20molecules%20for%20the%20ACME%20electron%20EDM%20search&rft.jtitle=New%20journal%20of%20physics&rft.au=Wu,%20X&rft.date=2022-07-01&rft.volume=24&rft.issue=7&rft.spage=73043&rft.pages=73043-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ac8014&rft_dat=%3Cproquest_cross%3E2700786526%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700786526&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_654f18bc2d9d44b4ba6e0b01eb9e4a4e&rfr_iscdi=true |