A three-term conjugate gradient method with accelerated subspace quadratic optimization

In this paper, a general search direction of three-term conjugate gradient method which always satisfy sufficient descent condition is adopted. By solving a new accelerated subspace quadratic optimization problem which can take the advantages of the linear conjugate gradient method, a new conjugate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics & computing 2022-08, Vol.68 (4), p.2407-2433
Hauptverfasser: Jian, Jinbao, Chen, Wenrui, Jiang, Xianzhen, Liu, Pengjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2433
container_issue 4
container_start_page 2407
container_title Journal of applied mathematics & computing
container_volume 68
creator Jian, Jinbao
Chen, Wenrui
Jiang, Xianzhen
Liu, Pengjie
description In this paper, a general search direction of three-term conjugate gradient method which always satisfy sufficient descent condition is adopted. By solving a new accelerated subspace quadratic optimization problem which can take the advantages of the linear conjugate gradient method, a new conjugate parameter is obtained and a new truncation strategy is proposed to modify the conjugate parameter. Thus, a three-term conjugate gradient method for solving unconstrained optimization problem is proposed under the standard Wolfe line search technique. Under general assumption, the global convergence of the algorithm is discussed and obtained. Finally, the numerical performance for our method is reported via testing about 100 examples and comparing with other two algorithms. Numerical results show that the proposed method is promising.
doi_str_mv 10.1007/s12190-021-01622-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2700750771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700750771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-ec6fd74a8a1af31d4d704aebfceb0390c42bb3786b448a84f6eb23bf336c4dc53</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdTSvmcwsS_EFBTeKy5DHnXZK59EkQ9Ffb7SCO1f3cO8558KH0DWjt4xSdRcZZzUllDNCWck5OZygGavKgnBaFadZF3VFirw4RxcxbiktVU3rGXpf4LQJACRB6LAb-u20NgnwOhjfQp9wB2kzeHxo0wYb52AHId89jpONo3GA95PxedU6PIyp7drPrIf-Ep01Zhfh6nfO0dvD_evyiaxeHp-XixVxXNaJgCsbr6SpDDONYF56RaUB2ziwVNTUSW6tUFVppaxMJZsSLBe2EaJ00rtCzNHNsXcMw36CmPR2mEKfX2quMpmCKsWyix9dLgwxBmj0GNrOhA_NqP4GqI8AdQaofwDqQw6JYyhmc7-G8Ff9T-oL17B2Ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700750771</pqid></control><display><type>article</type><title>A three-term conjugate gradient method with accelerated subspace quadratic optimization</title><source>Springer Nature - Complete Springer Journals</source><creator>Jian, Jinbao ; Chen, Wenrui ; Jiang, Xianzhen ; Liu, Pengjie</creator><creatorcontrib>Jian, Jinbao ; Chen, Wenrui ; Jiang, Xianzhen ; Liu, Pengjie</creatorcontrib><description>In this paper, a general search direction of three-term conjugate gradient method which always satisfy sufficient descent condition is adopted. By solving a new accelerated subspace quadratic optimization problem which can take the advantages of the linear conjugate gradient method, a new conjugate parameter is obtained and a new truncation strategy is proposed to modify the conjugate parameter. Thus, a three-term conjugate gradient method for solving unconstrained optimization problem is proposed under the standard Wolfe line search technique. Under general assumption, the global convergence of the algorithm is discussed and obtained. Finally, the numerical performance for our method is reported via testing about 100 examples and comparing with other two algorithms. Numerical results show that the proposed method is promising.</description><identifier>ISSN: 1598-5865</identifier><identifier>EISSN: 1865-2085</identifier><identifier>DOI: 10.1007/s12190-021-01622-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Applied mathematics ; Computational Mathematics and Numerical Analysis ; Conjugate gradient method ; Mathematical and Computational Engineering ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Optimization ; Original Research ; Parameter modification ; Theory of Computation</subject><ispartof>Journal of applied mathematics &amp; computing, 2022-08, Vol.68 (4), p.2407-2433</ispartof><rights>Korean Society for Informatics and Computational Applied Mathematics 2021</rights><rights>Korean Society for Informatics and Computational Applied Mathematics 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-ec6fd74a8a1af31d4d704aebfceb0390c42bb3786b448a84f6eb23bf336c4dc53</citedby><cites>FETCH-LOGICAL-c249t-ec6fd74a8a1af31d4d704aebfceb0390c42bb3786b448a84f6eb23bf336c4dc53</cites><orcidid>0000-0001-8048-7397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12190-021-01622-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12190-021-01622-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Jian, Jinbao</creatorcontrib><creatorcontrib>Chen, Wenrui</creatorcontrib><creatorcontrib>Jiang, Xianzhen</creatorcontrib><creatorcontrib>Liu, Pengjie</creatorcontrib><title>A three-term conjugate gradient method with accelerated subspace quadratic optimization</title><title>Journal of applied mathematics &amp; computing</title><addtitle>J. Appl. Math. Comput</addtitle><description>In this paper, a general search direction of three-term conjugate gradient method which always satisfy sufficient descent condition is adopted. By solving a new accelerated subspace quadratic optimization problem which can take the advantages of the linear conjugate gradient method, a new conjugate parameter is obtained and a new truncation strategy is proposed to modify the conjugate parameter. Thus, a three-term conjugate gradient method for solving unconstrained optimization problem is proposed under the standard Wolfe line search technique. Under general assumption, the global convergence of the algorithm is discussed and obtained. Finally, the numerical performance for our method is reported via testing about 100 examples and comparing with other two algorithms. Numerical results show that the proposed method is promising.</description><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Conjugate gradient method</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Optimization</subject><subject>Original Research</subject><subject>Parameter modification</subject><subject>Theory of Computation</subject><issn>1598-5865</issn><issn>1865-2085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdTSvmcwsS_EFBTeKy5DHnXZK59EkQ9Ffb7SCO1f3cO8558KH0DWjt4xSdRcZZzUllDNCWck5OZygGavKgnBaFadZF3VFirw4RxcxbiktVU3rGXpf4LQJACRB6LAb-u20NgnwOhjfQp9wB2kzeHxo0wYb52AHId89jpONo3GA95PxedU6PIyp7drPrIf-Ep01Zhfh6nfO0dvD_evyiaxeHp-XixVxXNaJgCsbr6SpDDONYF56RaUB2ziwVNTUSW6tUFVppaxMJZsSLBe2EaJ00rtCzNHNsXcMw36CmPR2mEKfX2quMpmCKsWyix9dLgwxBmj0GNrOhA_NqP4GqI8AdQaofwDqQw6JYyhmc7-G8Ff9T-oL17B2Ew</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Jian, Jinbao</creator><creator>Chen, Wenrui</creator><creator>Jiang, Xianzhen</creator><creator>Liu, Pengjie</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8048-7397</orcidid></search><sort><creationdate>20220801</creationdate><title>A three-term conjugate gradient method with accelerated subspace quadratic optimization</title><author>Jian, Jinbao ; Chen, Wenrui ; Jiang, Xianzhen ; Liu, Pengjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-ec6fd74a8a1af31d4d704aebfceb0390c42bb3786b448a84f6eb23bf336c4dc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Conjugate gradient method</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Optimization</topic><topic>Original Research</topic><topic>Parameter modification</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jian, Jinbao</creatorcontrib><creatorcontrib>Chen, Wenrui</creatorcontrib><creatorcontrib>Jiang, Xianzhen</creatorcontrib><creatorcontrib>Liu, Pengjie</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied mathematics &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jian, Jinbao</au><au>Chen, Wenrui</au><au>Jiang, Xianzhen</au><au>Liu, Pengjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A three-term conjugate gradient method with accelerated subspace quadratic optimization</atitle><jtitle>Journal of applied mathematics &amp; computing</jtitle><stitle>J. Appl. Math. Comput</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>68</volume><issue>4</issue><spage>2407</spage><epage>2433</epage><pages>2407-2433</pages><issn>1598-5865</issn><eissn>1865-2085</eissn><abstract>In this paper, a general search direction of three-term conjugate gradient method which always satisfy sufficient descent condition is adopted. By solving a new accelerated subspace quadratic optimization problem which can take the advantages of the linear conjugate gradient method, a new conjugate parameter is obtained and a new truncation strategy is proposed to modify the conjugate parameter. Thus, a three-term conjugate gradient method for solving unconstrained optimization problem is proposed under the standard Wolfe line search technique. Under general assumption, the global convergence of the algorithm is discussed and obtained. Finally, the numerical performance for our method is reported via testing about 100 examples and comparing with other two algorithms. Numerical results show that the proposed method is promising.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12190-021-01622-w</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-8048-7397</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1598-5865
ispartof Journal of applied mathematics & computing, 2022-08, Vol.68 (4), p.2407-2433
issn 1598-5865
1865-2085
language eng
recordid cdi_proquest_journals_2700750771
source Springer Nature - Complete Springer Journals
subjects Algorithms
Applied mathematics
Computational Mathematics and Numerical Analysis
Conjugate gradient method
Mathematical and Computational Engineering
Mathematics
Mathematics and Statistics
Mathematics of Computing
Optimization
Original Research
Parameter modification
Theory of Computation
title A three-term conjugate gradient method with accelerated subspace quadratic optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A15%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20three-term%20conjugate%20gradient%20method%20with%20accelerated%20subspace%20quadratic%20optimization&rft.jtitle=Journal%20of%20applied%20mathematics%20&%20computing&rft.au=Jian,%20Jinbao&rft.date=2022-08-01&rft.volume=68&rft.issue=4&rft.spage=2407&rft.epage=2433&rft.pages=2407-2433&rft.issn=1598-5865&rft.eissn=1865-2085&rft_id=info:doi/10.1007/s12190-021-01622-w&rft_dat=%3Cproquest_cross%3E2700750771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700750771&rft_id=info:pmid/&rfr_iscdi=true