A three-term conjugate gradient method with accelerated subspace quadratic optimization
In this paper, a general search direction of three-term conjugate gradient method which always satisfy sufficient descent condition is adopted. By solving a new accelerated subspace quadratic optimization problem which can take the advantages of the linear conjugate gradient method, a new conjugate...
Gespeichert in:
Veröffentlicht in: | Journal of applied mathematics & computing 2022-08, Vol.68 (4), p.2407-2433 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2433 |
---|---|
container_issue | 4 |
container_start_page | 2407 |
container_title | Journal of applied mathematics & computing |
container_volume | 68 |
creator | Jian, Jinbao Chen, Wenrui Jiang, Xianzhen Liu, Pengjie |
description | In this paper, a general search direction of three-term conjugate gradient method which always satisfy sufficient descent condition is adopted. By solving a new accelerated subspace quadratic optimization problem which can take the advantages of the linear conjugate gradient method, a new conjugate parameter is obtained and a new truncation strategy is proposed to modify the conjugate parameter. Thus, a three-term conjugate gradient method for solving unconstrained optimization problem is proposed under the standard Wolfe line search technique. Under general assumption, the global convergence of the algorithm is discussed and obtained. Finally, the numerical performance for our method is reported via testing about 100 examples and comparing with other two algorithms. Numerical results show that the proposed method is promising. |
doi_str_mv | 10.1007/s12190-021-01622-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2700750771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700750771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-ec6fd74a8a1af31d4d704aebfceb0390c42bb3786b448a84f6eb23bf336c4dc53</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdTSvmcwsS_EFBTeKy5DHnXZK59EkQ9Ffb7SCO1f3cO8558KH0DWjt4xSdRcZZzUllDNCWck5OZygGavKgnBaFadZF3VFirw4RxcxbiktVU3rGXpf4LQJACRB6LAb-u20NgnwOhjfQp9wB2kzeHxo0wYb52AHId89jpONo3GA95PxedU6PIyp7drPrIf-Ep01Zhfh6nfO0dvD_evyiaxeHp-XixVxXNaJgCsbr6SpDDONYF56RaUB2ziwVNTUSW6tUFVppaxMJZsSLBe2EaJ00rtCzNHNsXcMw36CmPR2mEKfX2quMpmCKsWyix9dLgwxBmj0GNrOhA_NqP4GqI8AdQaofwDqQw6JYyhmc7-G8Ff9T-oL17B2Ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700750771</pqid></control><display><type>article</type><title>A three-term conjugate gradient method with accelerated subspace quadratic optimization</title><source>Springer Nature - Complete Springer Journals</source><creator>Jian, Jinbao ; Chen, Wenrui ; Jiang, Xianzhen ; Liu, Pengjie</creator><creatorcontrib>Jian, Jinbao ; Chen, Wenrui ; Jiang, Xianzhen ; Liu, Pengjie</creatorcontrib><description>In this paper, a general search direction of three-term conjugate gradient method which always satisfy sufficient descent condition is adopted. By solving a new accelerated subspace quadratic optimization problem which can take the advantages of the linear conjugate gradient method, a new conjugate parameter is obtained and a new truncation strategy is proposed to modify the conjugate parameter. Thus, a three-term conjugate gradient method for solving unconstrained optimization problem is proposed under the standard Wolfe line search technique. Under general assumption, the global convergence of the algorithm is discussed and obtained. Finally, the numerical performance for our method is reported via testing about 100 examples and comparing with other two algorithms. Numerical results show that the proposed method is promising.</description><identifier>ISSN: 1598-5865</identifier><identifier>EISSN: 1865-2085</identifier><identifier>DOI: 10.1007/s12190-021-01622-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Applied mathematics ; Computational Mathematics and Numerical Analysis ; Conjugate gradient method ; Mathematical and Computational Engineering ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Optimization ; Original Research ; Parameter modification ; Theory of Computation</subject><ispartof>Journal of applied mathematics & computing, 2022-08, Vol.68 (4), p.2407-2433</ispartof><rights>Korean Society for Informatics and Computational Applied Mathematics 2021</rights><rights>Korean Society for Informatics and Computational Applied Mathematics 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-ec6fd74a8a1af31d4d704aebfceb0390c42bb3786b448a84f6eb23bf336c4dc53</citedby><cites>FETCH-LOGICAL-c249t-ec6fd74a8a1af31d4d704aebfceb0390c42bb3786b448a84f6eb23bf336c4dc53</cites><orcidid>0000-0001-8048-7397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12190-021-01622-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12190-021-01622-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Jian, Jinbao</creatorcontrib><creatorcontrib>Chen, Wenrui</creatorcontrib><creatorcontrib>Jiang, Xianzhen</creatorcontrib><creatorcontrib>Liu, Pengjie</creatorcontrib><title>A three-term conjugate gradient method with accelerated subspace quadratic optimization</title><title>Journal of applied mathematics & computing</title><addtitle>J. Appl. Math. Comput</addtitle><description>In this paper, a general search direction of three-term conjugate gradient method which always satisfy sufficient descent condition is adopted. By solving a new accelerated subspace quadratic optimization problem which can take the advantages of the linear conjugate gradient method, a new conjugate parameter is obtained and a new truncation strategy is proposed to modify the conjugate parameter. Thus, a three-term conjugate gradient method for solving unconstrained optimization problem is proposed under the standard Wolfe line search technique. Under general assumption, the global convergence of the algorithm is discussed and obtained. Finally, the numerical performance for our method is reported via testing about 100 examples and comparing with other two algorithms. Numerical results show that the proposed method is promising.</description><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Conjugate gradient method</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Optimization</subject><subject>Original Research</subject><subject>Parameter modification</subject><subject>Theory of Computation</subject><issn>1598-5865</issn><issn>1865-2085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdTSvmcwsS_EFBTeKy5DHnXZK59EkQ9Ffb7SCO1f3cO8558KH0DWjt4xSdRcZZzUllDNCWck5OZygGavKgnBaFadZF3VFirw4RxcxbiktVU3rGXpf4LQJACRB6LAb-u20NgnwOhjfQp9wB2kzeHxo0wYb52AHId89jpONo3GA95PxedU6PIyp7drPrIf-Ep01Zhfh6nfO0dvD_evyiaxeHp-XixVxXNaJgCsbr6SpDDONYF56RaUB2ziwVNTUSW6tUFVppaxMJZsSLBe2EaJ00rtCzNHNsXcMw36CmPR2mEKfX2quMpmCKsWyix9dLgwxBmj0GNrOhA_NqP4GqI8AdQaofwDqQw6JYyhmc7-G8Ff9T-oL17B2Ew</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Jian, Jinbao</creator><creator>Chen, Wenrui</creator><creator>Jiang, Xianzhen</creator><creator>Liu, Pengjie</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8048-7397</orcidid></search><sort><creationdate>20220801</creationdate><title>A three-term conjugate gradient method with accelerated subspace quadratic optimization</title><author>Jian, Jinbao ; Chen, Wenrui ; Jiang, Xianzhen ; Liu, Pengjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-ec6fd74a8a1af31d4d704aebfceb0390c42bb3786b448a84f6eb23bf336c4dc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Conjugate gradient method</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Optimization</topic><topic>Original Research</topic><topic>Parameter modification</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jian, Jinbao</creatorcontrib><creatorcontrib>Chen, Wenrui</creatorcontrib><creatorcontrib>Jiang, Xianzhen</creatorcontrib><creatorcontrib>Liu, Pengjie</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied mathematics & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jian, Jinbao</au><au>Chen, Wenrui</au><au>Jiang, Xianzhen</au><au>Liu, Pengjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A three-term conjugate gradient method with accelerated subspace quadratic optimization</atitle><jtitle>Journal of applied mathematics & computing</jtitle><stitle>J. Appl. Math. Comput</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>68</volume><issue>4</issue><spage>2407</spage><epage>2433</epage><pages>2407-2433</pages><issn>1598-5865</issn><eissn>1865-2085</eissn><abstract>In this paper, a general search direction of three-term conjugate gradient method which always satisfy sufficient descent condition is adopted. By solving a new accelerated subspace quadratic optimization problem which can take the advantages of the linear conjugate gradient method, a new conjugate parameter is obtained and a new truncation strategy is proposed to modify the conjugate parameter. Thus, a three-term conjugate gradient method for solving unconstrained optimization problem is proposed under the standard Wolfe line search technique. Under general assumption, the global convergence of the algorithm is discussed and obtained. Finally, the numerical performance for our method is reported via testing about 100 examples and comparing with other two algorithms. Numerical results show that the proposed method is promising.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12190-021-01622-w</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-8048-7397</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1598-5865 |
ispartof | Journal of applied mathematics & computing, 2022-08, Vol.68 (4), p.2407-2433 |
issn | 1598-5865 1865-2085 |
language | eng |
recordid | cdi_proquest_journals_2700750771 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Applied mathematics Computational Mathematics and Numerical Analysis Conjugate gradient method Mathematical and Computational Engineering Mathematics Mathematics and Statistics Mathematics of Computing Optimization Original Research Parameter modification Theory of Computation |
title | A three-term conjugate gradient method with accelerated subspace quadratic optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A15%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20three-term%20conjugate%20gradient%20method%20with%20accelerated%20subspace%20quadratic%20optimization&rft.jtitle=Journal%20of%20applied%20mathematics%20&%20computing&rft.au=Jian,%20Jinbao&rft.date=2022-08-01&rft.volume=68&rft.issue=4&rft.spage=2407&rft.epage=2433&rft.pages=2407-2433&rft.issn=1598-5865&rft.eissn=1865-2085&rft_id=info:doi/10.1007/s12190-021-01622-w&rft_dat=%3Cproquest_cross%3E2700750771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700750771&rft_id=info:pmid/&rfr_iscdi=true |