A Novel Seismocardiogram Mathematical Model for Simplified Adjustment of Adaptive Filter
Nonclinical measurements of a seismocardiogram (SCG) can diagnose cardiovascular disease (CVD) at an early stage, when a critical condition has not been reached, and prevents unplanned hospitalization. However, researchers are restricted when it comes to investigating the benefits of SCG signals for...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2022-08, Vol.11 (15), p.2444 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 15 |
container_start_page | 2444 |
container_title | Electronics (Basel) |
container_volume | 11 |
creator | Uskovas, Gediminas Valinevicius, Algimantas Zilys, Mindaugas Navikas, Dangirutis Frivaldsky, Michal Prauzek, Michal Konecny, Jaromir Andriukaitis, Darius |
description | Nonclinical measurements of a seismocardiogram (SCG) can diagnose cardiovascular disease (CVD) at an early stage, when a critical condition has not been reached, and prevents unplanned hospitalization. However, researchers are restricted when it comes to investigating the benefits of SCG signals for moving patients, because the public database does not contain such SCG signals. The analysis of a mathematical model of the seismocardiogram allows the simulation of the heart with cardiovascular disease. Additionally, the developed mathematical model of SCG does not totally replace the real cardio mechanical vibration of the heart. As a result, a seismocardiogram signal of 60 beats per min (bpm) was generated based on the main values of the main artefacts, their duration and acceleration. The resulting signal was processed by finite impulse response (FIR), infinitive impulse response (IRR), and four adaptive filters to obtain optimal signal processing settings. Meanwhile, the optimal filter settings were used to manage the real SCG signals of slowly moving or resting. Therefore, it is possible to validate measured SCG signals and perform advanced scientific research of seismocardiogram. Furthermore, the proposed mathematical model could enable electronic systems to measure the seismocardiogram with more accurate and reliable signal processing, allowing the extraction of more useful artefacts from the SCG signal during any activity. |
doi_str_mv | 10.3390/electronics11152444 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2700539433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700539433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-5411ca1ebc78b9521e420ae284d6a6aa312afbb20ea825f0575056165b5059933</originalsourceid><addsrcrecordid>eNptkE9Lw0AUxBdRsNR-Ai8LnqP7N8keS7EqtHqogrfwsnnRLUk37m4LfntT6sGD7zJv4McMDCHXnN1KadgddmhT8DtnI-dcC6XUGZkIVpjMCCPO__yXZBbjlo1nuCwlm5D3OX32B-zoBl3svYXQOP8RoKdrSJ_YQ3IWOrr2zci0PtCN64fOtQ4bOm-2-5h63CXq29HBkNwB6dJ1CcMVuWihizj71Sl5W96_Lh6z1cvD02K-yqwUImVacW6BY22LsjZacFSCAYpSNTnkAJILaOtaMIRS6JbpQjOd81zXoxoj5ZTcnHKH4L_2GFO19fuwGysrUTCmpVHySMkTZYOPMWBbDcH1EL4rzqrjitU_K8offBRn7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700539433</pqid></control><display><type>article</type><title>A Novel Seismocardiogram Mathematical Model for Simplified Adjustment of Adaptive Filter</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Uskovas, Gediminas ; Valinevicius, Algimantas ; Zilys, Mindaugas ; Navikas, Dangirutis ; Frivaldsky, Michal ; Prauzek, Michal ; Konecny, Jaromir ; Andriukaitis, Darius</creator><creatorcontrib>Uskovas, Gediminas ; Valinevicius, Algimantas ; Zilys, Mindaugas ; Navikas, Dangirutis ; Frivaldsky, Michal ; Prauzek, Michal ; Konecny, Jaromir ; Andriukaitis, Darius</creatorcontrib><description>Nonclinical measurements of a seismocardiogram (SCG) can diagnose cardiovascular disease (CVD) at an early stage, when a critical condition has not been reached, and prevents unplanned hospitalization. However, researchers are restricted when it comes to investigating the benefits of SCG signals for moving patients, because the public database does not contain such SCG signals. The analysis of a mathematical model of the seismocardiogram allows the simulation of the heart with cardiovascular disease. Additionally, the developed mathematical model of SCG does not totally replace the real cardio mechanical vibration of the heart. As a result, a seismocardiogram signal of 60 beats per min (bpm) was generated based on the main values of the main artefacts, their duration and acceleration. The resulting signal was processed by finite impulse response (FIR), infinitive impulse response (IRR), and four adaptive filters to obtain optimal signal processing settings. Meanwhile, the optimal filter settings were used to manage the real SCG signals of slowly moving or resting. Therefore, it is possible to validate measured SCG signals and perform advanced scientific research of seismocardiogram. Furthermore, the proposed mathematical model could enable electronic systems to measure the seismocardiogram with more accurate and reliable signal processing, allowing the extraction of more useful artefacts from the SCG signal during any activity.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11152444</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accelerometers ; Adaptive filters ; Blood pressure ; Blood vessels ; Cardiovascular system ; Coronary vessels ; Disease ; Electrocardiography ; Electronic systems ; Heart ; Heart diseases ; Hydraulics ; Impulse response ; Mathematical analysis ; Mathematical models ; Mechanics ; Morphology ; Noise ; Patients ; Physiology ; Sensors ; Signal processing ; Viscosity</subject><ispartof>Electronics (Basel), 2022-08, Vol.11 (15), p.2444</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-5411ca1ebc78b9521e420ae284d6a6aa312afbb20ea825f0575056165b5059933</citedby><cites>FETCH-LOGICAL-c322t-5411ca1ebc78b9521e420ae284d6a6aa312afbb20ea825f0575056165b5059933</cites><orcidid>0000-0001-6138-3103 ; 0000-0003-1348-1328 ; 0000-0002-9862-8917 ; 0000-0002-0496-2915 ; 0000-0003-1408-7015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Uskovas, Gediminas</creatorcontrib><creatorcontrib>Valinevicius, Algimantas</creatorcontrib><creatorcontrib>Zilys, Mindaugas</creatorcontrib><creatorcontrib>Navikas, Dangirutis</creatorcontrib><creatorcontrib>Frivaldsky, Michal</creatorcontrib><creatorcontrib>Prauzek, Michal</creatorcontrib><creatorcontrib>Konecny, Jaromir</creatorcontrib><creatorcontrib>Andriukaitis, Darius</creatorcontrib><title>A Novel Seismocardiogram Mathematical Model for Simplified Adjustment of Adaptive Filter</title><title>Electronics (Basel)</title><description>Nonclinical measurements of a seismocardiogram (SCG) can diagnose cardiovascular disease (CVD) at an early stage, when a critical condition has not been reached, and prevents unplanned hospitalization. However, researchers are restricted when it comes to investigating the benefits of SCG signals for moving patients, because the public database does not contain such SCG signals. The analysis of a mathematical model of the seismocardiogram allows the simulation of the heart with cardiovascular disease. Additionally, the developed mathematical model of SCG does not totally replace the real cardio mechanical vibration of the heart. As a result, a seismocardiogram signal of 60 beats per min (bpm) was generated based on the main values of the main artefacts, their duration and acceleration. The resulting signal was processed by finite impulse response (FIR), infinitive impulse response (IRR), and four adaptive filters to obtain optimal signal processing settings. Meanwhile, the optimal filter settings were used to manage the real SCG signals of slowly moving or resting. Therefore, it is possible to validate measured SCG signals and perform advanced scientific research of seismocardiogram. Furthermore, the proposed mathematical model could enable electronic systems to measure the seismocardiogram with more accurate and reliable signal processing, allowing the extraction of more useful artefacts from the SCG signal during any activity.</description><subject>Accelerometers</subject><subject>Adaptive filters</subject><subject>Blood pressure</subject><subject>Blood vessels</subject><subject>Cardiovascular system</subject><subject>Coronary vessels</subject><subject>Disease</subject><subject>Electrocardiography</subject><subject>Electronic systems</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Hydraulics</subject><subject>Impulse response</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Morphology</subject><subject>Noise</subject><subject>Patients</subject><subject>Physiology</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Viscosity</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkE9Lw0AUxBdRsNR-Ai8LnqP7N8keS7EqtHqogrfwsnnRLUk37m4LfntT6sGD7zJv4McMDCHXnN1KadgddmhT8DtnI-dcC6XUGZkIVpjMCCPO__yXZBbjlo1nuCwlm5D3OX32B-zoBl3svYXQOP8RoKdrSJ_YQ3IWOrr2zci0PtCN64fOtQ4bOm-2-5h63CXq29HBkNwB6dJ1CcMVuWihizj71Sl5W96_Lh6z1cvD02K-yqwUImVacW6BY22LsjZacFSCAYpSNTnkAJILaOtaMIRS6JbpQjOd81zXoxoj5ZTcnHKH4L_2GFO19fuwGysrUTCmpVHySMkTZYOPMWBbDcH1EL4rzqrjitU_K8offBRn7g</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Uskovas, Gediminas</creator><creator>Valinevicius, Algimantas</creator><creator>Zilys, Mindaugas</creator><creator>Navikas, Dangirutis</creator><creator>Frivaldsky, Michal</creator><creator>Prauzek, Michal</creator><creator>Konecny, Jaromir</creator><creator>Andriukaitis, Darius</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-6138-3103</orcidid><orcidid>https://orcid.org/0000-0003-1348-1328</orcidid><orcidid>https://orcid.org/0000-0002-9862-8917</orcidid><orcidid>https://orcid.org/0000-0002-0496-2915</orcidid><orcidid>https://orcid.org/0000-0003-1408-7015</orcidid></search><sort><creationdate>20220801</creationdate><title>A Novel Seismocardiogram Mathematical Model for Simplified Adjustment of Adaptive Filter</title><author>Uskovas, Gediminas ; Valinevicius, Algimantas ; Zilys, Mindaugas ; Navikas, Dangirutis ; Frivaldsky, Michal ; Prauzek, Michal ; Konecny, Jaromir ; Andriukaitis, Darius</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-5411ca1ebc78b9521e420ae284d6a6aa312afbb20ea825f0575056165b5059933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accelerometers</topic><topic>Adaptive filters</topic><topic>Blood pressure</topic><topic>Blood vessels</topic><topic>Cardiovascular system</topic><topic>Coronary vessels</topic><topic>Disease</topic><topic>Electrocardiography</topic><topic>Electronic systems</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Hydraulics</topic><topic>Impulse response</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Morphology</topic><topic>Noise</topic><topic>Patients</topic><topic>Physiology</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uskovas, Gediminas</creatorcontrib><creatorcontrib>Valinevicius, Algimantas</creatorcontrib><creatorcontrib>Zilys, Mindaugas</creatorcontrib><creatorcontrib>Navikas, Dangirutis</creatorcontrib><creatorcontrib>Frivaldsky, Michal</creatorcontrib><creatorcontrib>Prauzek, Michal</creatorcontrib><creatorcontrib>Konecny, Jaromir</creatorcontrib><creatorcontrib>Andriukaitis, Darius</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uskovas, Gediminas</au><au>Valinevicius, Algimantas</au><au>Zilys, Mindaugas</au><au>Navikas, Dangirutis</au><au>Frivaldsky, Michal</au><au>Prauzek, Michal</au><au>Konecny, Jaromir</au><au>Andriukaitis, Darius</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Seismocardiogram Mathematical Model for Simplified Adjustment of Adaptive Filter</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>11</volume><issue>15</issue><spage>2444</spage><pages>2444-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Nonclinical measurements of a seismocardiogram (SCG) can diagnose cardiovascular disease (CVD) at an early stage, when a critical condition has not been reached, and prevents unplanned hospitalization. However, researchers are restricted when it comes to investigating the benefits of SCG signals for moving patients, because the public database does not contain such SCG signals. The analysis of a mathematical model of the seismocardiogram allows the simulation of the heart with cardiovascular disease. Additionally, the developed mathematical model of SCG does not totally replace the real cardio mechanical vibration of the heart. As a result, a seismocardiogram signal of 60 beats per min (bpm) was generated based on the main values of the main artefacts, their duration and acceleration. The resulting signal was processed by finite impulse response (FIR), infinitive impulse response (IRR), and four adaptive filters to obtain optimal signal processing settings. Meanwhile, the optimal filter settings were used to manage the real SCG signals of slowly moving or resting. Therefore, it is possible to validate measured SCG signals and perform advanced scientific research of seismocardiogram. Furthermore, the proposed mathematical model could enable electronic systems to measure the seismocardiogram with more accurate and reliable signal processing, allowing the extraction of more useful artefacts from the SCG signal during any activity.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11152444</doi><orcidid>https://orcid.org/0000-0001-6138-3103</orcidid><orcidid>https://orcid.org/0000-0003-1348-1328</orcidid><orcidid>https://orcid.org/0000-0002-9862-8917</orcidid><orcidid>https://orcid.org/0000-0002-0496-2915</orcidid><orcidid>https://orcid.org/0000-0003-1408-7015</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2022-08, Vol.11 (15), p.2444 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2700539433 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Accelerometers Adaptive filters Blood pressure Blood vessels Cardiovascular system Coronary vessels Disease Electrocardiography Electronic systems Heart Heart diseases Hydraulics Impulse response Mathematical analysis Mathematical models Mechanics Morphology Noise Patients Physiology Sensors Signal processing Viscosity |
title | A Novel Seismocardiogram Mathematical Model for Simplified Adjustment of Adaptive Filter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A23%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Seismocardiogram%20Mathematical%20Model%20for%20Simplified%20Adjustment%20of%20Adaptive%20Filter&rft.jtitle=Electronics%20(Basel)&rft.au=Uskovas,%20Gediminas&rft.date=2022-08-01&rft.volume=11&rft.issue=15&rft.spage=2444&rft.pages=2444-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11152444&rft_dat=%3Cproquest_cross%3E2700539433%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700539433&rft_id=info:pmid/&rfr_iscdi=true |