A Novel Seismocardiogram Mathematical Model for Simplified Adjustment of Adaptive Filter

Nonclinical measurements of a seismocardiogram (SCG) can diagnose cardiovascular disease (CVD) at an early stage, when a critical condition has not been reached, and prevents unplanned hospitalization. However, researchers are restricted when it comes to investigating the benefits of SCG signals for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2022-08, Vol.11 (15), p.2444
Hauptverfasser: Uskovas, Gediminas, Valinevicius, Algimantas, Zilys, Mindaugas, Navikas, Dangirutis, Frivaldsky, Michal, Prauzek, Michal, Konecny, Jaromir, Andriukaitis, Darius
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page 2444
container_title Electronics (Basel)
container_volume 11
creator Uskovas, Gediminas
Valinevicius, Algimantas
Zilys, Mindaugas
Navikas, Dangirutis
Frivaldsky, Michal
Prauzek, Michal
Konecny, Jaromir
Andriukaitis, Darius
description Nonclinical measurements of a seismocardiogram (SCG) can diagnose cardiovascular disease (CVD) at an early stage, when a critical condition has not been reached, and prevents unplanned hospitalization. However, researchers are restricted when it comes to investigating the benefits of SCG signals for moving patients, because the public database does not contain such SCG signals. The analysis of a mathematical model of the seismocardiogram allows the simulation of the heart with cardiovascular disease. Additionally, the developed mathematical model of SCG does not totally replace the real cardio mechanical vibration of the heart. As a result, a seismocardiogram signal of 60 beats per min (bpm) was generated based on the main values of the main artefacts, their duration and acceleration. The resulting signal was processed by finite impulse response (FIR), infinitive impulse response (IRR), and four adaptive filters to obtain optimal signal processing settings. Meanwhile, the optimal filter settings were used to manage the real SCG signals of slowly moving or resting. Therefore, it is possible to validate measured SCG signals and perform advanced scientific research of seismocardiogram. Furthermore, the proposed mathematical model could enable electronic systems to measure the seismocardiogram with more accurate and reliable signal processing, allowing the extraction of more useful artefacts from the SCG signal during any activity.
doi_str_mv 10.3390/electronics11152444
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2700539433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700539433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-5411ca1ebc78b9521e420ae284d6a6aa312afbb20ea825f0575056165b5059933</originalsourceid><addsrcrecordid>eNptkE9Lw0AUxBdRsNR-Ai8LnqP7N8keS7EqtHqogrfwsnnRLUk37m4LfntT6sGD7zJv4McMDCHXnN1KadgddmhT8DtnI-dcC6XUGZkIVpjMCCPO__yXZBbjlo1nuCwlm5D3OX32B-zoBl3svYXQOP8RoKdrSJ_YQ3IWOrr2zci0PtCN64fOtQ4bOm-2-5h63CXq29HBkNwB6dJ1CcMVuWihizj71Sl5W96_Lh6z1cvD02K-yqwUImVacW6BY22LsjZacFSCAYpSNTnkAJILaOtaMIRS6JbpQjOd81zXoxoj5ZTcnHKH4L_2GFO19fuwGysrUTCmpVHySMkTZYOPMWBbDcH1EL4rzqrjitU_K8offBRn7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700539433</pqid></control><display><type>article</type><title>A Novel Seismocardiogram Mathematical Model for Simplified Adjustment of Adaptive Filter</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Uskovas, Gediminas ; Valinevicius, Algimantas ; Zilys, Mindaugas ; Navikas, Dangirutis ; Frivaldsky, Michal ; Prauzek, Michal ; Konecny, Jaromir ; Andriukaitis, Darius</creator><creatorcontrib>Uskovas, Gediminas ; Valinevicius, Algimantas ; Zilys, Mindaugas ; Navikas, Dangirutis ; Frivaldsky, Michal ; Prauzek, Michal ; Konecny, Jaromir ; Andriukaitis, Darius</creatorcontrib><description>Nonclinical measurements of a seismocardiogram (SCG) can diagnose cardiovascular disease (CVD) at an early stage, when a critical condition has not been reached, and prevents unplanned hospitalization. However, researchers are restricted when it comes to investigating the benefits of SCG signals for moving patients, because the public database does not contain such SCG signals. The analysis of a mathematical model of the seismocardiogram allows the simulation of the heart with cardiovascular disease. Additionally, the developed mathematical model of SCG does not totally replace the real cardio mechanical vibration of the heart. As a result, a seismocardiogram signal of 60 beats per min (bpm) was generated based on the main values of the main artefacts, their duration and acceleration. The resulting signal was processed by finite impulse response (FIR), infinitive impulse response (IRR), and four adaptive filters to obtain optimal signal processing settings. Meanwhile, the optimal filter settings were used to manage the real SCG signals of slowly moving or resting. Therefore, it is possible to validate measured SCG signals and perform advanced scientific research of seismocardiogram. Furthermore, the proposed mathematical model could enable electronic systems to measure the seismocardiogram with more accurate and reliable signal processing, allowing the extraction of more useful artefacts from the SCG signal during any activity.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11152444</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accelerometers ; Adaptive filters ; Blood pressure ; Blood vessels ; Cardiovascular system ; Coronary vessels ; Disease ; Electrocardiography ; Electronic systems ; Heart ; Heart diseases ; Hydraulics ; Impulse response ; Mathematical analysis ; Mathematical models ; Mechanics ; Morphology ; Noise ; Patients ; Physiology ; Sensors ; Signal processing ; Viscosity</subject><ispartof>Electronics (Basel), 2022-08, Vol.11 (15), p.2444</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-5411ca1ebc78b9521e420ae284d6a6aa312afbb20ea825f0575056165b5059933</citedby><cites>FETCH-LOGICAL-c322t-5411ca1ebc78b9521e420ae284d6a6aa312afbb20ea825f0575056165b5059933</cites><orcidid>0000-0001-6138-3103 ; 0000-0003-1348-1328 ; 0000-0002-9862-8917 ; 0000-0002-0496-2915 ; 0000-0003-1408-7015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Uskovas, Gediminas</creatorcontrib><creatorcontrib>Valinevicius, Algimantas</creatorcontrib><creatorcontrib>Zilys, Mindaugas</creatorcontrib><creatorcontrib>Navikas, Dangirutis</creatorcontrib><creatorcontrib>Frivaldsky, Michal</creatorcontrib><creatorcontrib>Prauzek, Michal</creatorcontrib><creatorcontrib>Konecny, Jaromir</creatorcontrib><creatorcontrib>Andriukaitis, Darius</creatorcontrib><title>A Novel Seismocardiogram Mathematical Model for Simplified Adjustment of Adaptive Filter</title><title>Electronics (Basel)</title><description>Nonclinical measurements of a seismocardiogram (SCG) can diagnose cardiovascular disease (CVD) at an early stage, when a critical condition has not been reached, and prevents unplanned hospitalization. However, researchers are restricted when it comes to investigating the benefits of SCG signals for moving patients, because the public database does not contain such SCG signals. The analysis of a mathematical model of the seismocardiogram allows the simulation of the heart with cardiovascular disease. Additionally, the developed mathematical model of SCG does not totally replace the real cardio mechanical vibration of the heart. As a result, a seismocardiogram signal of 60 beats per min (bpm) was generated based on the main values of the main artefacts, their duration and acceleration. The resulting signal was processed by finite impulse response (FIR), infinitive impulse response (IRR), and four adaptive filters to obtain optimal signal processing settings. Meanwhile, the optimal filter settings were used to manage the real SCG signals of slowly moving or resting. Therefore, it is possible to validate measured SCG signals and perform advanced scientific research of seismocardiogram. Furthermore, the proposed mathematical model could enable electronic systems to measure the seismocardiogram with more accurate and reliable signal processing, allowing the extraction of more useful artefacts from the SCG signal during any activity.</description><subject>Accelerometers</subject><subject>Adaptive filters</subject><subject>Blood pressure</subject><subject>Blood vessels</subject><subject>Cardiovascular system</subject><subject>Coronary vessels</subject><subject>Disease</subject><subject>Electrocardiography</subject><subject>Electronic systems</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Hydraulics</subject><subject>Impulse response</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Morphology</subject><subject>Noise</subject><subject>Patients</subject><subject>Physiology</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Viscosity</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkE9Lw0AUxBdRsNR-Ai8LnqP7N8keS7EqtHqogrfwsnnRLUk37m4LfntT6sGD7zJv4McMDCHXnN1KadgddmhT8DtnI-dcC6XUGZkIVpjMCCPO__yXZBbjlo1nuCwlm5D3OX32B-zoBl3svYXQOP8RoKdrSJ_YQ3IWOrr2zci0PtCN64fOtQ4bOm-2-5h63CXq29HBkNwB6dJ1CcMVuWihizj71Sl5W96_Lh6z1cvD02K-yqwUImVacW6BY22LsjZacFSCAYpSNTnkAJILaOtaMIRS6JbpQjOd81zXoxoj5ZTcnHKH4L_2GFO19fuwGysrUTCmpVHySMkTZYOPMWBbDcH1EL4rzqrjitU_K8offBRn7g</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Uskovas, Gediminas</creator><creator>Valinevicius, Algimantas</creator><creator>Zilys, Mindaugas</creator><creator>Navikas, Dangirutis</creator><creator>Frivaldsky, Michal</creator><creator>Prauzek, Michal</creator><creator>Konecny, Jaromir</creator><creator>Andriukaitis, Darius</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-6138-3103</orcidid><orcidid>https://orcid.org/0000-0003-1348-1328</orcidid><orcidid>https://orcid.org/0000-0002-9862-8917</orcidid><orcidid>https://orcid.org/0000-0002-0496-2915</orcidid><orcidid>https://orcid.org/0000-0003-1408-7015</orcidid></search><sort><creationdate>20220801</creationdate><title>A Novel Seismocardiogram Mathematical Model for Simplified Adjustment of Adaptive Filter</title><author>Uskovas, Gediminas ; Valinevicius, Algimantas ; Zilys, Mindaugas ; Navikas, Dangirutis ; Frivaldsky, Michal ; Prauzek, Michal ; Konecny, Jaromir ; Andriukaitis, Darius</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-5411ca1ebc78b9521e420ae284d6a6aa312afbb20ea825f0575056165b5059933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accelerometers</topic><topic>Adaptive filters</topic><topic>Blood pressure</topic><topic>Blood vessels</topic><topic>Cardiovascular system</topic><topic>Coronary vessels</topic><topic>Disease</topic><topic>Electrocardiography</topic><topic>Electronic systems</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Hydraulics</topic><topic>Impulse response</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Morphology</topic><topic>Noise</topic><topic>Patients</topic><topic>Physiology</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uskovas, Gediminas</creatorcontrib><creatorcontrib>Valinevicius, Algimantas</creatorcontrib><creatorcontrib>Zilys, Mindaugas</creatorcontrib><creatorcontrib>Navikas, Dangirutis</creatorcontrib><creatorcontrib>Frivaldsky, Michal</creatorcontrib><creatorcontrib>Prauzek, Michal</creatorcontrib><creatorcontrib>Konecny, Jaromir</creatorcontrib><creatorcontrib>Andriukaitis, Darius</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uskovas, Gediminas</au><au>Valinevicius, Algimantas</au><au>Zilys, Mindaugas</au><au>Navikas, Dangirutis</au><au>Frivaldsky, Michal</au><au>Prauzek, Michal</au><au>Konecny, Jaromir</au><au>Andriukaitis, Darius</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Seismocardiogram Mathematical Model for Simplified Adjustment of Adaptive Filter</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>11</volume><issue>15</issue><spage>2444</spage><pages>2444-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Nonclinical measurements of a seismocardiogram (SCG) can diagnose cardiovascular disease (CVD) at an early stage, when a critical condition has not been reached, and prevents unplanned hospitalization. However, researchers are restricted when it comes to investigating the benefits of SCG signals for moving patients, because the public database does not contain such SCG signals. The analysis of a mathematical model of the seismocardiogram allows the simulation of the heart with cardiovascular disease. Additionally, the developed mathematical model of SCG does not totally replace the real cardio mechanical vibration of the heart. As a result, a seismocardiogram signal of 60 beats per min (bpm) was generated based on the main values of the main artefacts, their duration and acceleration. The resulting signal was processed by finite impulse response (FIR), infinitive impulse response (IRR), and four adaptive filters to obtain optimal signal processing settings. Meanwhile, the optimal filter settings were used to manage the real SCG signals of slowly moving or resting. Therefore, it is possible to validate measured SCG signals and perform advanced scientific research of seismocardiogram. Furthermore, the proposed mathematical model could enable electronic systems to measure the seismocardiogram with more accurate and reliable signal processing, allowing the extraction of more useful artefacts from the SCG signal during any activity.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11152444</doi><orcidid>https://orcid.org/0000-0001-6138-3103</orcidid><orcidid>https://orcid.org/0000-0003-1348-1328</orcidid><orcidid>https://orcid.org/0000-0002-9862-8917</orcidid><orcidid>https://orcid.org/0000-0002-0496-2915</orcidid><orcidid>https://orcid.org/0000-0003-1408-7015</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2022-08, Vol.11 (15), p.2444
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2700539433
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Accelerometers
Adaptive filters
Blood pressure
Blood vessels
Cardiovascular system
Coronary vessels
Disease
Electrocardiography
Electronic systems
Heart
Heart diseases
Hydraulics
Impulse response
Mathematical analysis
Mathematical models
Mechanics
Morphology
Noise
Patients
Physiology
Sensors
Signal processing
Viscosity
title A Novel Seismocardiogram Mathematical Model for Simplified Adjustment of Adaptive Filter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A23%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Seismocardiogram%20Mathematical%20Model%20for%20Simplified%20Adjustment%20of%20Adaptive%20Filter&rft.jtitle=Electronics%20(Basel)&rft.au=Uskovas,%20Gediminas&rft.date=2022-08-01&rft.volume=11&rft.issue=15&rft.spage=2444&rft.pages=2444-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11152444&rft_dat=%3Cproquest_cross%3E2700539433%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700539433&rft_id=info:pmid/&rfr_iscdi=true