Prediction of electricity prices for non‐regulated markets based on a power transformed mean reverting process
The electricity price time series for non‐regulated markets presents two basic properties: (a) a mean reversion trend around a constant or deterministic function and (b) a price process with high volatility and marginal, conditional, and asymptotic distributions skewed to the right. We propose a mic...
Gespeichert in:
Veröffentlicht in: | Applied stochastic models in business and industry 2022-07, Vol.38 (4), p.677-694 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 694 |
---|---|
container_issue | 4 |
container_start_page | 677 |
container_title | Applied stochastic models in business and industry |
container_volume | 38 |
creator | Castañeda‐Leyva, Netzahualcóyotl Hernández‐Ramos, Hugo Pérez‐Hernández, Leonel Ramón Rodríguez‐Narciso, Silvia |
description | The electricity price time series for non‐regulated markets presents two basic properties: (a) a mean reversion trend around a constant or deterministic function and (b) a price process with high volatility and marginal, conditional, and asymptotic distributions skewed to the right. We propose a microeconomic‐based model for the dynamics of electricity prices that provides a satisfactory explanation of the stylized features observed in non‐regulated electricity markets. The suggested model is based on a power transformation of the Ornstein–Uhlenbeck process, which accounts for the unobserved demand process. This means that the model requires only the spot price of the electricity price to be available. Parameter estimates were obtained using the maximum likelihood method. This approach was implemented for data from the Alberta electricity market in Canada, with satisfactory results in terms of residual analysis and forecasting. The success rate of predicting the price jump sign (upward and downward) was approximately 80%$$ 80\% $$. Moreover, the statistical properties for the maximum likelihood parameter estimators are shown via a Monte Carlo simulation of the electricity price time series. |
doi_str_mv | 10.1002/asmb.2681 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2700533561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700533561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2571-7660ad2d064280f5785c9e9678aa059da4775faf4cf299050a391d4002b157e33</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhSMEEqWw4AaWWLFIO3bsOFkWxJ9UBBKwttxkXKWkcbFdqu44AmfkJDgtW1YzI33vjd5LknMKIwrAxtovZyOWF_QgGVDB8pQDE4e7nae0BH6cnHi_AKCUSzpIVs8O66YKje2INQRbrIJrqiZsySpO9MRYRzrb_Xx9O5yvWx2wJkvt3jF4MtM-XlGqycpu0JHgdOejYtlDqDvi8BNdaLp5tLPRzp8mR0a3Hs_-5jB5u715vb5Pp093D9eTaVoxIWkq8xx0zWrIOSvACFmIqsQyl4XWIMpacymF0YZXhpUlCNBZSWseK5hRITHLhsnF3jf-_VijD2ph166LLxWTACLLRE4jdbmnKme9d2hUTB3TbRUF1Req-kJVX2hkx3t207S4_R9Uk5fHq53iF9NueaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700533561</pqid></control><display><type>article</type><title>Prediction of electricity prices for non‐regulated markets based on a power transformed mean reverting process</title><source>EBSCOhost Business Source Complete</source><source>Wiley Online Library All Journals</source><creator>Castañeda‐Leyva, Netzahualcóyotl ; Hernández‐Ramos, Hugo ; Pérez‐Hernández, Leonel Ramón ; Rodríguez‐Narciso, Silvia</creator><creatorcontrib>Castañeda‐Leyva, Netzahualcóyotl ; Hernández‐Ramos, Hugo ; Pérez‐Hernández, Leonel Ramón ; Rodríguez‐Narciso, Silvia</creatorcontrib><description>The electricity price time series for non‐regulated markets presents two basic properties: (a) a mean reversion trend around a constant or deterministic function and (b) a price process with high volatility and marginal, conditional, and asymptotic distributions skewed to the right. We propose a microeconomic‐based model for the dynamics of electricity prices that provides a satisfactory explanation of the stylized features observed in non‐regulated electricity markets. The suggested model is based on a power transformation of the Ornstein–Uhlenbeck process, which accounts for the unobserved demand process. This means that the model requires only the spot price of the electricity price to be available. Parameter estimates were obtained using the maximum likelihood method. This approach was implemented for data from the Alberta electricity market in Canada, with satisfactory results in terms of residual analysis and forecasting. The success rate of predicting the price jump sign (upward and downward) was approximately 80%$$ 80\% $$. Moreover, the statistical properties for the maximum likelihood parameter estimators are shown via a Monte Carlo simulation of the electricity price time series.</description><identifier>ISSN: 1524-1904</identifier><identifier>EISSN: 1526-4025</identifier><identifier>DOI: 10.1002/asmb.2681</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Barlow's model ; Electricity ; electricity price ; Electricity pricing ; Mathematical models ; Maximum likelihood estimators ; Maximum likelihood method ; Monte Carlo simulation ; nonlinear time series ; Ornstein–Uhlenbeck process ; Parameter estimation ; supply and demand equilibrium equation ; Time series ; Yeo‐Johnson power transformation</subject><ispartof>Applied stochastic models in business and industry, 2022-07, Vol.38 (4), p.677-694</ispartof><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2571-7660ad2d064280f5785c9e9678aa059da4775faf4cf299050a391d4002b157e33</cites><orcidid>0000-0001-5429-5914 ; 0000-0001-9414-3923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasmb.2681$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasmb.2681$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Castañeda‐Leyva, Netzahualcóyotl</creatorcontrib><creatorcontrib>Hernández‐Ramos, Hugo</creatorcontrib><creatorcontrib>Pérez‐Hernández, Leonel Ramón</creatorcontrib><creatorcontrib>Rodríguez‐Narciso, Silvia</creatorcontrib><title>Prediction of electricity prices for non‐regulated markets based on a power transformed mean reverting process</title><title>Applied stochastic models in business and industry</title><description>The electricity price time series for non‐regulated markets presents two basic properties: (a) a mean reversion trend around a constant or deterministic function and (b) a price process with high volatility and marginal, conditional, and asymptotic distributions skewed to the right. We propose a microeconomic‐based model for the dynamics of electricity prices that provides a satisfactory explanation of the stylized features observed in non‐regulated electricity markets. The suggested model is based on a power transformation of the Ornstein–Uhlenbeck process, which accounts for the unobserved demand process. This means that the model requires only the spot price of the electricity price to be available. Parameter estimates were obtained using the maximum likelihood method. This approach was implemented for data from the Alberta electricity market in Canada, with satisfactory results in terms of residual analysis and forecasting. The success rate of predicting the price jump sign (upward and downward) was approximately 80%$$ 80\% $$. Moreover, the statistical properties for the maximum likelihood parameter estimators are shown via a Monte Carlo simulation of the electricity price time series.</description><subject>Barlow's model</subject><subject>Electricity</subject><subject>electricity price</subject><subject>Electricity pricing</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimators</subject><subject>Maximum likelihood method</subject><subject>Monte Carlo simulation</subject><subject>nonlinear time series</subject><subject>Ornstein–Uhlenbeck process</subject><subject>Parameter estimation</subject><subject>supply and demand equilibrium equation</subject><subject>Time series</subject><subject>Yeo‐Johnson power transformation</subject><issn>1524-1904</issn><issn>1526-4025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhSMEEqWw4AaWWLFIO3bsOFkWxJ9UBBKwttxkXKWkcbFdqu44AmfkJDgtW1YzI33vjd5LknMKIwrAxtovZyOWF_QgGVDB8pQDE4e7nae0BH6cnHi_AKCUSzpIVs8O66YKje2INQRbrIJrqiZsySpO9MRYRzrb_Xx9O5yvWx2wJkvt3jF4MtM-XlGqycpu0JHgdOejYtlDqDvi8BNdaLp5tLPRzp8mR0a3Hs_-5jB5u715vb5Pp093D9eTaVoxIWkq8xx0zWrIOSvACFmIqsQyl4XWIMpacymF0YZXhpUlCNBZSWseK5hRITHLhsnF3jf-_VijD2ph166LLxWTACLLRE4jdbmnKme9d2hUTB3TbRUF1Req-kJVX2hkx3t207S4_R9Uk5fHq53iF9NueaA</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Castañeda‐Leyva, Netzahualcóyotl</creator><creator>Hernández‐Ramos, Hugo</creator><creator>Pérez‐Hernández, Leonel Ramón</creator><creator>Rodríguez‐Narciso, Silvia</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5429-5914</orcidid><orcidid>https://orcid.org/0000-0001-9414-3923</orcidid></search><sort><creationdate>202207</creationdate><title>Prediction of electricity prices for non‐regulated markets based on a power transformed mean reverting process</title><author>Castañeda‐Leyva, Netzahualcóyotl ; Hernández‐Ramos, Hugo ; Pérez‐Hernández, Leonel Ramón ; Rodríguez‐Narciso, Silvia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2571-7660ad2d064280f5785c9e9678aa059da4775faf4cf299050a391d4002b157e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Barlow's model</topic><topic>Electricity</topic><topic>electricity price</topic><topic>Electricity pricing</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimators</topic><topic>Maximum likelihood method</topic><topic>Monte Carlo simulation</topic><topic>nonlinear time series</topic><topic>Ornstein–Uhlenbeck process</topic><topic>Parameter estimation</topic><topic>supply and demand equilibrium equation</topic><topic>Time series</topic><topic>Yeo‐Johnson power transformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castañeda‐Leyva, Netzahualcóyotl</creatorcontrib><creatorcontrib>Hernández‐Ramos, Hugo</creatorcontrib><creatorcontrib>Pérez‐Hernández, Leonel Ramón</creatorcontrib><creatorcontrib>Rodríguez‐Narciso, Silvia</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied stochastic models in business and industry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castañeda‐Leyva, Netzahualcóyotl</au><au>Hernández‐Ramos, Hugo</au><au>Pérez‐Hernández, Leonel Ramón</au><au>Rodríguez‐Narciso, Silvia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of electricity prices for non‐regulated markets based on a power transformed mean reverting process</atitle><jtitle>Applied stochastic models in business and industry</jtitle><date>2022-07</date><risdate>2022</risdate><volume>38</volume><issue>4</issue><spage>677</spage><epage>694</epage><pages>677-694</pages><issn>1524-1904</issn><eissn>1526-4025</eissn><abstract>The electricity price time series for non‐regulated markets presents two basic properties: (a) a mean reversion trend around a constant or deterministic function and (b) a price process with high volatility and marginal, conditional, and asymptotic distributions skewed to the right. We propose a microeconomic‐based model for the dynamics of electricity prices that provides a satisfactory explanation of the stylized features observed in non‐regulated electricity markets. The suggested model is based on a power transformation of the Ornstein–Uhlenbeck process, which accounts for the unobserved demand process. This means that the model requires only the spot price of the electricity price to be available. Parameter estimates were obtained using the maximum likelihood method. This approach was implemented for data from the Alberta electricity market in Canada, with satisfactory results in terms of residual analysis and forecasting. The success rate of predicting the price jump sign (upward and downward) was approximately 80%$$ 80\% $$. Moreover, the statistical properties for the maximum likelihood parameter estimators are shown via a Monte Carlo simulation of the electricity price time series.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/asmb.2681</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5429-5914</orcidid><orcidid>https://orcid.org/0000-0001-9414-3923</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1524-1904 |
ispartof | Applied stochastic models in business and industry, 2022-07, Vol.38 (4), p.677-694 |
issn | 1524-1904 1526-4025 |
language | eng |
recordid | cdi_proquest_journals_2700533561 |
source | EBSCOhost Business Source Complete; Wiley Online Library All Journals |
subjects | Barlow's model Electricity electricity price Electricity pricing Mathematical models Maximum likelihood estimators Maximum likelihood method Monte Carlo simulation nonlinear time series Ornstein–Uhlenbeck process Parameter estimation supply and demand equilibrium equation Time series Yeo‐Johnson power transformation |
title | Prediction of electricity prices for non‐regulated markets based on a power transformed mean reverting process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A55%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20electricity%20prices%20for%20non%E2%80%90regulated%20markets%20based%20on%20a%20power%20transformed%20mean%20reverting%20process&rft.jtitle=Applied%20stochastic%20models%20in%20business%20and%20industry&rft.au=Casta%C3%B1eda%E2%80%90Leyva,%20Netzahualc%C3%B3yotl&rft.date=2022-07&rft.volume=38&rft.issue=4&rft.spage=677&rft.epage=694&rft.pages=677-694&rft.issn=1524-1904&rft.eissn=1526-4025&rft_id=info:doi/10.1002/asmb.2681&rft_dat=%3Cproquest_cross%3E2700533561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700533561&rft_id=info:pmid/&rfr_iscdi=true |