Prediction of electricity prices for non‐regulated markets based on a power transformed mean reverting process

The electricity price time series for non‐regulated markets presents two basic properties: (a) a mean reversion trend around a constant or deterministic function and (b) a price process with high volatility and marginal, conditional, and asymptotic distributions skewed to the right. We propose a mic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied stochastic models in business and industry 2022-07, Vol.38 (4), p.677-694
Hauptverfasser: Castañeda‐Leyva, Netzahualcóyotl, Hernández‐Ramos, Hugo, Pérez‐Hernández, Leonel Ramón, Rodríguez‐Narciso, Silvia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 694
container_issue 4
container_start_page 677
container_title Applied stochastic models in business and industry
container_volume 38
creator Castañeda‐Leyva, Netzahualcóyotl
Hernández‐Ramos, Hugo
Pérez‐Hernández, Leonel Ramón
Rodríguez‐Narciso, Silvia
description The electricity price time series for non‐regulated markets presents two basic properties: (a) a mean reversion trend around a constant or deterministic function and (b) a price process with high volatility and marginal, conditional, and asymptotic distributions skewed to the right. We propose a microeconomic‐based model for the dynamics of electricity prices that provides a satisfactory explanation of the stylized features observed in non‐regulated electricity markets. The suggested model is based on a power transformation of the Ornstein–Uhlenbeck process, which accounts for the unobserved demand process. This means that the model requires only the spot price of the electricity price to be available. Parameter estimates were obtained using the maximum likelihood method. This approach was implemented for data from the Alberta electricity market in Canada, with satisfactory results in terms of residual analysis and forecasting. The success rate of predicting the price jump sign (upward and downward) was approximately 80%$$ 80\% $$. Moreover, the statistical properties for the maximum likelihood parameter estimators are shown via a Monte Carlo simulation of the electricity price time series.
doi_str_mv 10.1002/asmb.2681
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2700533561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700533561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2571-7660ad2d064280f5785c9e9678aa059da4775faf4cf299050a391d4002b157e33</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhSMEEqWw4AaWWLFIO3bsOFkWxJ9UBBKwttxkXKWkcbFdqu44AmfkJDgtW1YzI33vjd5LknMKIwrAxtovZyOWF_QgGVDB8pQDE4e7nae0BH6cnHi_AKCUSzpIVs8O66YKje2INQRbrIJrqiZsySpO9MRYRzrb_Xx9O5yvWx2wJkvt3jF4MtM-XlGqycpu0JHgdOejYtlDqDvi8BNdaLp5tLPRzp8mR0a3Hs_-5jB5u715vb5Pp093D9eTaVoxIWkq8xx0zWrIOSvACFmIqsQyl4XWIMpacymF0YZXhpUlCNBZSWseK5hRITHLhsnF3jf-_VijD2ph166LLxWTACLLRE4jdbmnKme9d2hUTB3TbRUF1Req-kJVX2hkx3t207S4_R9Uk5fHq53iF9NueaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700533561</pqid></control><display><type>article</type><title>Prediction of electricity prices for non‐regulated markets based on a power transformed mean reverting process</title><source>EBSCOhost Business Source Complete</source><source>Wiley Online Library All Journals</source><creator>Castañeda‐Leyva, Netzahualcóyotl ; Hernández‐Ramos, Hugo ; Pérez‐Hernández, Leonel Ramón ; Rodríguez‐Narciso, Silvia</creator><creatorcontrib>Castañeda‐Leyva, Netzahualcóyotl ; Hernández‐Ramos, Hugo ; Pérez‐Hernández, Leonel Ramón ; Rodríguez‐Narciso, Silvia</creatorcontrib><description>The electricity price time series for non‐regulated markets presents two basic properties: (a) a mean reversion trend around a constant or deterministic function and (b) a price process with high volatility and marginal, conditional, and asymptotic distributions skewed to the right. We propose a microeconomic‐based model for the dynamics of electricity prices that provides a satisfactory explanation of the stylized features observed in non‐regulated electricity markets. The suggested model is based on a power transformation of the Ornstein–Uhlenbeck process, which accounts for the unobserved demand process. This means that the model requires only the spot price of the electricity price to be available. Parameter estimates were obtained using the maximum likelihood method. This approach was implemented for data from the Alberta electricity market in Canada, with satisfactory results in terms of residual analysis and forecasting. The success rate of predicting the price jump sign (upward and downward) was approximately 80%$$ 80\% $$. Moreover, the statistical properties for the maximum likelihood parameter estimators are shown via a Monte Carlo simulation of the electricity price time series.</description><identifier>ISSN: 1524-1904</identifier><identifier>EISSN: 1526-4025</identifier><identifier>DOI: 10.1002/asmb.2681</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Barlow's model ; Electricity ; electricity price ; Electricity pricing ; Mathematical models ; Maximum likelihood estimators ; Maximum likelihood method ; Monte Carlo simulation ; nonlinear time series ; Ornstein–Uhlenbeck process ; Parameter estimation ; supply and demand equilibrium equation ; Time series ; Yeo‐Johnson power transformation</subject><ispartof>Applied stochastic models in business and industry, 2022-07, Vol.38 (4), p.677-694</ispartof><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2571-7660ad2d064280f5785c9e9678aa059da4775faf4cf299050a391d4002b157e33</cites><orcidid>0000-0001-5429-5914 ; 0000-0001-9414-3923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasmb.2681$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasmb.2681$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Castañeda‐Leyva, Netzahualcóyotl</creatorcontrib><creatorcontrib>Hernández‐Ramos, Hugo</creatorcontrib><creatorcontrib>Pérez‐Hernández, Leonel Ramón</creatorcontrib><creatorcontrib>Rodríguez‐Narciso, Silvia</creatorcontrib><title>Prediction of electricity prices for non‐regulated markets based on a power transformed mean reverting process</title><title>Applied stochastic models in business and industry</title><description>The electricity price time series for non‐regulated markets presents two basic properties: (a) a mean reversion trend around a constant or deterministic function and (b) a price process with high volatility and marginal, conditional, and asymptotic distributions skewed to the right. We propose a microeconomic‐based model for the dynamics of electricity prices that provides a satisfactory explanation of the stylized features observed in non‐regulated electricity markets. The suggested model is based on a power transformation of the Ornstein–Uhlenbeck process, which accounts for the unobserved demand process. This means that the model requires only the spot price of the electricity price to be available. Parameter estimates were obtained using the maximum likelihood method. This approach was implemented for data from the Alberta electricity market in Canada, with satisfactory results in terms of residual analysis and forecasting. The success rate of predicting the price jump sign (upward and downward) was approximately 80%$$ 80\% $$. Moreover, the statistical properties for the maximum likelihood parameter estimators are shown via a Monte Carlo simulation of the electricity price time series.</description><subject>Barlow's model</subject><subject>Electricity</subject><subject>electricity price</subject><subject>Electricity pricing</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimators</subject><subject>Maximum likelihood method</subject><subject>Monte Carlo simulation</subject><subject>nonlinear time series</subject><subject>Ornstein–Uhlenbeck process</subject><subject>Parameter estimation</subject><subject>supply and demand equilibrium equation</subject><subject>Time series</subject><subject>Yeo‐Johnson power transformation</subject><issn>1524-1904</issn><issn>1526-4025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhSMEEqWw4AaWWLFIO3bsOFkWxJ9UBBKwttxkXKWkcbFdqu44AmfkJDgtW1YzI33vjd5LknMKIwrAxtovZyOWF_QgGVDB8pQDE4e7nae0BH6cnHi_AKCUSzpIVs8O66YKje2INQRbrIJrqiZsySpO9MRYRzrb_Xx9O5yvWx2wJkvt3jF4MtM-XlGqycpu0JHgdOejYtlDqDvi8BNdaLp5tLPRzp8mR0a3Hs_-5jB5u715vb5Pp093D9eTaVoxIWkq8xx0zWrIOSvACFmIqsQyl4XWIMpacymF0YZXhpUlCNBZSWseK5hRITHLhsnF3jf-_VijD2ph166LLxWTACLLRE4jdbmnKme9d2hUTB3TbRUF1Req-kJVX2hkx3t207S4_R9Uk5fHq53iF9NueaA</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Castañeda‐Leyva, Netzahualcóyotl</creator><creator>Hernández‐Ramos, Hugo</creator><creator>Pérez‐Hernández, Leonel Ramón</creator><creator>Rodríguez‐Narciso, Silvia</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5429-5914</orcidid><orcidid>https://orcid.org/0000-0001-9414-3923</orcidid></search><sort><creationdate>202207</creationdate><title>Prediction of electricity prices for non‐regulated markets based on a power transformed mean reverting process</title><author>Castañeda‐Leyva, Netzahualcóyotl ; Hernández‐Ramos, Hugo ; Pérez‐Hernández, Leonel Ramón ; Rodríguez‐Narciso, Silvia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2571-7660ad2d064280f5785c9e9678aa059da4775faf4cf299050a391d4002b157e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Barlow's model</topic><topic>Electricity</topic><topic>electricity price</topic><topic>Electricity pricing</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimators</topic><topic>Maximum likelihood method</topic><topic>Monte Carlo simulation</topic><topic>nonlinear time series</topic><topic>Ornstein–Uhlenbeck process</topic><topic>Parameter estimation</topic><topic>supply and demand equilibrium equation</topic><topic>Time series</topic><topic>Yeo‐Johnson power transformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castañeda‐Leyva, Netzahualcóyotl</creatorcontrib><creatorcontrib>Hernández‐Ramos, Hugo</creatorcontrib><creatorcontrib>Pérez‐Hernández, Leonel Ramón</creatorcontrib><creatorcontrib>Rodríguez‐Narciso, Silvia</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied stochastic models in business and industry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castañeda‐Leyva, Netzahualcóyotl</au><au>Hernández‐Ramos, Hugo</au><au>Pérez‐Hernández, Leonel Ramón</au><au>Rodríguez‐Narciso, Silvia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of electricity prices for non‐regulated markets based on a power transformed mean reverting process</atitle><jtitle>Applied stochastic models in business and industry</jtitle><date>2022-07</date><risdate>2022</risdate><volume>38</volume><issue>4</issue><spage>677</spage><epage>694</epage><pages>677-694</pages><issn>1524-1904</issn><eissn>1526-4025</eissn><abstract>The electricity price time series for non‐regulated markets presents two basic properties: (a) a mean reversion trend around a constant or deterministic function and (b) a price process with high volatility and marginal, conditional, and asymptotic distributions skewed to the right. We propose a microeconomic‐based model for the dynamics of electricity prices that provides a satisfactory explanation of the stylized features observed in non‐regulated electricity markets. The suggested model is based on a power transformation of the Ornstein–Uhlenbeck process, which accounts for the unobserved demand process. This means that the model requires only the spot price of the electricity price to be available. Parameter estimates were obtained using the maximum likelihood method. This approach was implemented for data from the Alberta electricity market in Canada, with satisfactory results in terms of residual analysis and forecasting. The success rate of predicting the price jump sign (upward and downward) was approximately 80%$$ 80\% $$. Moreover, the statistical properties for the maximum likelihood parameter estimators are shown via a Monte Carlo simulation of the electricity price time series.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/asmb.2681</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5429-5914</orcidid><orcidid>https://orcid.org/0000-0001-9414-3923</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1524-1904
ispartof Applied stochastic models in business and industry, 2022-07, Vol.38 (4), p.677-694
issn 1524-1904
1526-4025
language eng
recordid cdi_proquest_journals_2700533561
source EBSCOhost Business Source Complete; Wiley Online Library All Journals
subjects Barlow's model
Electricity
electricity price
Electricity pricing
Mathematical models
Maximum likelihood estimators
Maximum likelihood method
Monte Carlo simulation
nonlinear time series
Ornstein–Uhlenbeck process
Parameter estimation
supply and demand equilibrium equation
Time series
Yeo‐Johnson power transformation
title Prediction of electricity prices for non‐regulated markets based on a power transformed mean reverting process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A55%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20electricity%20prices%20for%20non%E2%80%90regulated%20markets%20based%20on%20a%20power%20transformed%20mean%20reverting%20process&rft.jtitle=Applied%20stochastic%20models%20in%20business%20and%20industry&rft.au=Casta%C3%B1eda%E2%80%90Leyva,%20Netzahualc%C3%B3yotl&rft.date=2022-07&rft.volume=38&rft.issue=4&rft.spage=677&rft.epage=694&rft.pages=677-694&rft.issn=1524-1904&rft.eissn=1526-4025&rft_id=info:doi/10.1002/asmb.2681&rft_dat=%3Cproquest_cross%3E2700533561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700533561&rft_id=info:pmid/&rfr_iscdi=true