Fluid transport and storage in the Cascadia forearc influenced by overriding plate lithology
Subduction of hydrated oceanic lithosphere can carry water deep into the Earth, with consequences for a range of tectonic and magmatic processes. Most of the fluid is released in the forearc where it plays a critical role in controlling the mechanical properties and seismic behaviour of the subducti...
Gespeichert in:
Veröffentlicht in: | Nature geoscience 2022-08, Vol.15 (8), p.677-682 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 682 |
---|---|
container_issue | 8 |
container_start_page | 677 |
container_title | Nature geoscience |
container_volume | 15 |
creator | Egbert, Gary D. Yang, Bo Bedrosian, Paul A. Key, Kerry Livelybrooks, Dean W. Schultz, Adam Kelbert, Anna Parris, Blake |
description | Subduction of hydrated oceanic lithosphere can carry water deep into the Earth, with consequences for a range of tectonic and magmatic processes. Most of the fluid is released in the forearc where it plays a critical role in controlling the mechanical properties and seismic behaviour of the subduction megathrust. Here we present results from three-dimensional inversions of data from nearly 400 long-period magnetotelluric sites, including 64 offshore, to provide insights into the distribution of fluids in the forearc of the Cascadia subduction zone. We constrain the geometry of the electrically resistive Siletz terrane, a thickened section of oceanic crust accreted to North America in the Eocene, and the conductive accretionary complex underthrust along the margin. We find that fluids accumulate over timescales exceeding 1 My above the plate in metasedimentary units, while the mafic rocks of Siletzia remain dry. Fluid concentrations tend to peak at slab depths of 17.5 and 30 km, suggesting control by metamorphic processes, but also concentrate around the edges of Siletzia, suggesting that this mafic block is impermeable, with dehydration fluids escaping up-dip along the megathrust. Our results demonstrate that the lithology of the overriding crust can play a critical role in controlling fluid transport in a subduction zone.
The lithology of the overriding plate plays a critical role in determining fluid transport in subduction zones, according to magnetotelluric imaging of the impact of the dry, mafic Siletzia terrane on fluids in the Cascadia subduction zone, North America. |
doi_str_mv | 10.1038/s41561-022-00981-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2700451332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700451332</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-61cb5d517021eb588aa9d0d6d1050033769b8041911fd6fc3031fdd68639b7893</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU8Bz9VJ06TJURZXhQUvehNC2qTdLrWpSSr03xut4s3TvBneewMfQpcErglQcRMKwjjJIM8zAClIJo7QipQsrRLE8a8WsjhFZyEcADgUJVuh120_dQZHr4cwOh-xHgwO0XndWtwNOO4t3uhQa9Np3Dhvta_TveknO9TW4GrG7sN635luaPHY62hx38W96107n6OTRvfBXvzMNXrZ3j1vHrLd0_3j5naXaSp4zDipK2YYKSEntmJCaC0NGG4IMABKSy4rAQWRhDSGNzUFmoThglNZlULSNbpaekfv3icbojq4yQ_ppcpLgIIRSvPkyhdX7V0I3jZq9N2b9rMioL4oqoWiShTVN0UlUoguoZDMQ2v9X_U_qU8rPHTD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700451332</pqid></control><display><type>article</type><title>Fluid transport and storage in the Cascadia forearc influenced by overriding plate lithology</title><source>Alma/SFX Local Collection</source><creator>Egbert, Gary D. ; Yang, Bo ; Bedrosian, Paul A. ; Key, Kerry ; Livelybrooks, Dean W. ; Schultz, Adam ; Kelbert, Anna ; Parris, Blake</creator><creatorcontrib>Egbert, Gary D. ; Yang, Bo ; Bedrosian, Paul A. ; Key, Kerry ; Livelybrooks, Dean W. ; Schultz, Adam ; Kelbert, Anna ; Parris, Blake</creatorcontrib><description>Subduction of hydrated oceanic lithosphere can carry water deep into the Earth, with consequences for a range of tectonic and magmatic processes. Most of the fluid is released in the forearc where it plays a critical role in controlling the mechanical properties and seismic behaviour of the subduction megathrust. Here we present results from three-dimensional inversions of data from nearly 400 long-period magnetotelluric sites, including 64 offshore, to provide insights into the distribution of fluids in the forearc of the Cascadia subduction zone. We constrain the geometry of the electrically resistive Siletz terrane, a thickened section of oceanic crust accreted to North America in the Eocene, and the conductive accretionary complex underthrust along the margin. We find that fluids accumulate over timescales exceeding 1 My above the plate in metasedimentary units, while the mafic rocks of Siletzia remain dry. Fluid concentrations tend to peak at slab depths of 17.5 and 30 km, suggesting control by metamorphic processes, but also concentrate around the edges of Siletzia, suggesting that this mafic block is impermeable, with dehydration fluids escaping up-dip along the megathrust. Our results demonstrate that the lithology of the overriding crust can play a critical role in controlling fluid transport in a subduction zone.
The lithology of the overriding plate plays a critical role in determining fluid transport in subduction zones, according to magnetotelluric imaging of the impact of the dry, mafic Siletzia terrane on fluids in the Cascadia subduction zone, North America.</description><identifier>ISSN: 1752-0894</identifier><identifier>EISSN: 1752-0908</identifier><identifier>DOI: 10.1038/s41561-022-00981-8</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/2151/210 ; 704/2151/214 ; 704/2151/508 ; 704/2151/562 ; Accretion ; Dehydration ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Eocene ; Fluids ; Geochemistry ; Geology ; Geophysics/Geodesy ; Inversions ; Lithology ; Lithosphere ; Mechanical properties ; Oceanic crust ; Offshore ; Plates (tectonics) ; Seismic activity ; Seismic response ; Storage ; Subduction ; Subduction (geology) ; Subduction zones ; Tectonics ; Transport</subject><ispartof>Nature geoscience, 2022-08, Vol.15 (8), p.677-682</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-61cb5d517021eb588aa9d0d6d1050033769b8041911fd6fc3031fdd68639b7893</citedby><cites>FETCH-LOGICAL-a386t-61cb5d517021eb588aa9d0d6d1050033769b8041911fd6fc3031fdd68639b7893</cites><orcidid>0000-0003-1169-6683 ; 0000-0001-6790-9882 ; 0000-0002-6786-1038</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Egbert, Gary D.</creatorcontrib><creatorcontrib>Yang, Bo</creatorcontrib><creatorcontrib>Bedrosian, Paul A.</creatorcontrib><creatorcontrib>Key, Kerry</creatorcontrib><creatorcontrib>Livelybrooks, Dean W.</creatorcontrib><creatorcontrib>Schultz, Adam</creatorcontrib><creatorcontrib>Kelbert, Anna</creatorcontrib><creatorcontrib>Parris, Blake</creatorcontrib><title>Fluid transport and storage in the Cascadia forearc influenced by overriding plate lithology</title><title>Nature geoscience</title><addtitle>Nat. Geosci</addtitle><description>Subduction of hydrated oceanic lithosphere can carry water deep into the Earth, with consequences for a range of tectonic and magmatic processes. Most of the fluid is released in the forearc where it plays a critical role in controlling the mechanical properties and seismic behaviour of the subduction megathrust. Here we present results from three-dimensional inversions of data from nearly 400 long-period magnetotelluric sites, including 64 offshore, to provide insights into the distribution of fluids in the forearc of the Cascadia subduction zone. We constrain the geometry of the electrically resistive Siletz terrane, a thickened section of oceanic crust accreted to North America in the Eocene, and the conductive accretionary complex underthrust along the margin. We find that fluids accumulate over timescales exceeding 1 My above the plate in metasedimentary units, while the mafic rocks of Siletzia remain dry. Fluid concentrations tend to peak at slab depths of 17.5 and 30 km, suggesting control by metamorphic processes, but also concentrate around the edges of Siletzia, suggesting that this mafic block is impermeable, with dehydration fluids escaping up-dip along the megathrust. Our results demonstrate that the lithology of the overriding crust can play a critical role in controlling fluid transport in a subduction zone.
The lithology of the overriding plate plays a critical role in determining fluid transport in subduction zones, according to magnetotelluric imaging of the impact of the dry, mafic Siletzia terrane on fluids in the Cascadia subduction zone, North America.</description><subject>704/2151/210</subject><subject>704/2151/214</subject><subject>704/2151/508</subject><subject>704/2151/562</subject><subject>Accretion</subject><subject>Dehydration</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Eocene</subject><subject>Fluids</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Inversions</subject><subject>Lithology</subject><subject>Lithosphere</subject><subject>Mechanical properties</subject><subject>Oceanic crust</subject><subject>Offshore</subject><subject>Plates (tectonics)</subject><subject>Seismic activity</subject><subject>Seismic response</subject><subject>Storage</subject><subject>Subduction</subject><subject>Subduction (geology)</subject><subject>Subduction zones</subject><subject>Tectonics</subject><subject>Transport</subject><issn>1752-0894</issn><issn>1752-0908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEFLxDAQhYMouK7-AU8Bz9VJ06TJURZXhQUvehNC2qTdLrWpSSr03xut4s3TvBneewMfQpcErglQcRMKwjjJIM8zAClIJo7QipQsrRLE8a8WsjhFZyEcADgUJVuh120_dQZHr4cwOh-xHgwO0XndWtwNOO4t3uhQa9Np3Dhvta_TveknO9TW4GrG7sN635luaPHY62hx38W96107n6OTRvfBXvzMNXrZ3j1vHrLd0_3j5naXaSp4zDipK2YYKSEntmJCaC0NGG4IMABKSy4rAQWRhDSGNzUFmoThglNZlULSNbpaekfv3icbojq4yQ_ppcpLgIIRSvPkyhdX7V0I3jZq9N2b9rMioL4oqoWiShTVN0UlUoguoZDMQ2v9X_U_qU8rPHTD</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Egbert, Gary D.</creator><creator>Yang, Bo</creator><creator>Bedrosian, Paul A.</creator><creator>Key, Kerry</creator><creator>Livelybrooks, Dean W.</creator><creator>Schultz, Adam</creator><creator>Kelbert, Anna</creator><creator>Parris, Blake</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>LK8</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-1169-6683</orcidid><orcidid>https://orcid.org/0000-0001-6790-9882</orcidid><orcidid>https://orcid.org/0000-0002-6786-1038</orcidid></search><sort><creationdate>20220801</creationdate><title>Fluid transport and storage in the Cascadia forearc influenced by overriding plate lithology</title><author>Egbert, Gary D. ; Yang, Bo ; Bedrosian, Paul A. ; Key, Kerry ; Livelybrooks, Dean W. ; Schultz, Adam ; Kelbert, Anna ; Parris, Blake</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-61cb5d517021eb588aa9d0d6d1050033769b8041911fd6fc3031fdd68639b7893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>704/2151/210</topic><topic>704/2151/214</topic><topic>704/2151/508</topic><topic>704/2151/562</topic><topic>Accretion</topic><topic>Dehydration</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Eocene</topic><topic>Fluids</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Inversions</topic><topic>Lithology</topic><topic>Lithosphere</topic><topic>Mechanical properties</topic><topic>Oceanic crust</topic><topic>Offshore</topic><topic>Plates (tectonics)</topic><topic>Seismic activity</topic><topic>Seismic response</topic><topic>Storage</topic><topic>Subduction</topic><topic>Subduction (geology)</topic><topic>Subduction zones</topic><topic>Tectonics</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Egbert, Gary D.</creatorcontrib><creatorcontrib>Yang, Bo</creatorcontrib><creatorcontrib>Bedrosian, Paul A.</creatorcontrib><creatorcontrib>Key, Kerry</creatorcontrib><creatorcontrib>Livelybrooks, Dean W.</creatorcontrib><creatorcontrib>Schultz, Adam</creatorcontrib><creatorcontrib>Kelbert, Anna</creatorcontrib><creatorcontrib>Parris, Blake</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature geoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Egbert, Gary D.</au><au>Yang, Bo</au><au>Bedrosian, Paul A.</au><au>Key, Kerry</au><au>Livelybrooks, Dean W.</au><au>Schultz, Adam</au><au>Kelbert, Anna</au><au>Parris, Blake</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluid transport and storage in the Cascadia forearc influenced by overriding plate lithology</atitle><jtitle>Nature geoscience</jtitle><stitle>Nat. Geosci</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>15</volume><issue>8</issue><spage>677</spage><epage>682</epage><pages>677-682</pages><issn>1752-0894</issn><eissn>1752-0908</eissn><abstract>Subduction of hydrated oceanic lithosphere can carry water deep into the Earth, with consequences for a range of tectonic and magmatic processes. Most of the fluid is released in the forearc where it plays a critical role in controlling the mechanical properties and seismic behaviour of the subduction megathrust. Here we present results from three-dimensional inversions of data from nearly 400 long-period magnetotelluric sites, including 64 offshore, to provide insights into the distribution of fluids in the forearc of the Cascadia subduction zone. We constrain the geometry of the electrically resistive Siletz terrane, a thickened section of oceanic crust accreted to North America in the Eocene, and the conductive accretionary complex underthrust along the margin. We find that fluids accumulate over timescales exceeding 1 My above the plate in metasedimentary units, while the mafic rocks of Siletzia remain dry. Fluid concentrations tend to peak at slab depths of 17.5 and 30 km, suggesting control by metamorphic processes, but also concentrate around the edges of Siletzia, suggesting that this mafic block is impermeable, with dehydration fluids escaping up-dip along the megathrust. Our results demonstrate that the lithology of the overriding crust can play a critical role in controlling fluid transport in a subduction zone.
The lithology of the overriding plate plays a critical role in determining fluid transport in subduction zones, according to magnetotelluric imaging of the impact of the dry, mafic Siletzia terrane on fluids in the Cascadia subduction zone, North America.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41561-022-00981-8</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1169-6683</orcidid><orcidid>https://orcid.org/0000-0001-6790-9882</orcidid><orcidid>https://orcid.org/0000-0002-6786-1038</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1752-0894 |
ispartof | Nature geoscience, 2022-08, Vol.15 (8), p.677-682 |
issn | 1752-0894 1752-0908 |
language | eng |
recordid | cdi_proquest_journals_2700451332 |
source | Alma/SFX Local Collection |
subjects | 704/2151/210 704/2151/214 704/2151/508 704/2151/562 Accretion Dehydration Earth and Environmental Science Earth Sciences Earth System Sciences Eocene Fluids Geochemistry Geology Geophysics/Geodesy Inversions Lithology Lithosphere Mechanical properties Oceanic crust Offshore Plates (tectonics) Seismic activity Seismic response Storage Subduction Subduction (geology) Subduction zones Tectonics Transport |
title | Fluid transport and storage in the Cascadia forearc influenced by overriding plate lithology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A59%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluid%20transport%20and%20storage%20in%20the%20Cascadia%20forearc%20influenced%20by%20overriding%20plate%20lithology&rft.jtitle=Nature%20geoscience&rft.au=Egbert,%20Gary%20D.&rft.date=2022-08-01&rft.volume=15&rft.issue=8&rft.spage=677&rft.epage=682&rft.pages=677-682&rft.issn=1752-0894&rft.eissn=1752-0908&rft_id=info:doi/10.1038/s41561-022-00981-8&rft_dat=%3Cproquest_cross%3E2700451332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700451332&rft_id=info:pmid/&rfr_iscdi=true |