Sustained mid-Pliocene warmth led to deep water formation in the North Pacific
Geologic intervals of sustained warmth such as the mid-Pliocene Warm Period can inform our understanding of future climate change, including the long-term consequences of oceanic uptake of anthropogenic carbon. Here we generate carbon isotope records and synthesize existing records to reconstruct th...
Gespeichert in:
Veröffentlicht in: | Nature geoscience 2022-08, Vol.15 (8), p.658-663 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 663 |
---|---|
container_issue | 8 |
container_start_page | 658 |
container_title | Nature geoscience |
container_volume | 15 |
creator | Ford, H. L. Burls, N. J. Jacobs, P. Jahn, A. Caballero-Gill, R. P. Hodell, D. A. Fedorov, A. V. |
description | Geologic intervals of sustained warmth such as the mid-Pliocene Warm Period can inform our understanding of future climate change, including the long-term consequences of oceanic uptake of anthropogenic carbon. Here we generate carbon isotope records and synthesize existing records to reconstruct the position of water masses and determine circulation patterns in the deep Pacific Ocean. We show that the mid-depth carbon isotope gradient in the North Pacific was reversed during the mid-Pliocene compared with today, which implies water flowed from north to south and deep water probably formed in the subarctic North Pacific Deep Water. An isotopically enabled climate model that simulates this North Pacific Deep Water reproduces a similar carbon isotope pattern. Modelled levels of dissolved inorganic carbon content in the North Pacific decrease slightly, although the amount of carbon stored in the ocean actually increases by 1.6% relative to modern due to an increase in dissolved inorganic carbon in the surface ocean. Although the modelled Pliocene ocean maintains a carbon budget similar to the present, the change in deep ocean circulation configuration causes pronounced downstream changes in biogeochemistry.
Marine carbon isotope patterns point to substantial deep water formation in the North Pacific during the mid-Pliocene Warm Period, according to a synthesis of carbon isotope records and isotope-enabled climate modelling. |
doi_str_mv | 10.1038/s41561-022-00978-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2700451093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700451093</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-97da23d05276dbc70328a920fd473575aa7b9b32ecfcc6e5f48fe386cdf38e643</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXA9eidZDLJLKX4AqkFdR3SPGxKZ1KTFPHfmzqKO1f33sM558KH0HkNlzVQcZWamrV1BYRUAB0XFT1Ak5qzcnYgDn930TXH6CSlNUALDWcTNH_epaz8YA3uvakWGx-0HSz-ULHPK7wpeg7YWLstUrYRuxB7lX0YsB9wXlk8D7EYF0p75_UpOnJqk-zZz5yi19ubl9l99fh09zC7fqwUFW2uOm4UoQYY4a1Zag6UCNURcKbhlHGmFF92S0qsdlq3lrlGOFuS2jgqbNvQKboYe7cxvO9synIddnEoLyXhAA2roaPFRUaXjiGlaJ3cRt-r-ClrkHtucuQmCzf5zU3uQ3QMpWIe3mz8q_4n9QXCFHAn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700451093</pqid></control><display><type>article</type><title>Sustained mid-Pliocene warmth led to deep water formation in the North Pacific</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ford, H. L. ; Burls, N. J. ; Jacobs, P. ; Jahn, A. ; Caballero-Gill, R. P. ; Hodell, D. A. ; Fedorov, A. V.</creator><creatorcontrib>Ford, H. L. ; Burls, N. J. ; Jacobs, P. ; Jahn, A. ; Caballero-Gill, R. P. ; Hodell, D. A. ; Fedorov, A. V.</creatorcontrib><description>Geologic intervals of sustained warmth such as the mid-Pliocene Warm Period can inform our understanding of future climate change, including the long-term consequences of oceanic uptake of anthropogenic carbon. Here we generate carbon isotope records and synthesize existing records to reconstruct the position of water masses and determine circulation patterns in the deep Pacific Ocean. We show that the mid-depth carbon isotope gradient in the North Pacific was reversed during the mid-Pliocene compared with today, which implies water flowed from north to south and deep water probably formed in the subarctic North Pacific Deep Water. An isotopically enabled climate model that simulates this North Pacific Deep Water reproduces a similar carbon isotope pattern. Modelled levels of dissolved inorganic carbon content in the North Pacific decrease slightly, although the amount of carbon stored in the ocean actually increases by 1.6% relative to modern due to an increase in dissolved inorganic carbon in the surface ocean. Although the modelled Pliocene ocean maintains a carbon budget similar to the present, the change in deep ocean circulation configuration causes pronounced downstream changes in biogeochemistry.
Marine carbon isotope patterns point to substantial deep water formation in the North Pacific during the mid-Pliocene Warm Period, according to a synthesis of carbon isotope records and isotope-enabled climate modelling.</description><identifier>ISSN: 1752-0894</identifier><identifier>EISSN: 1752-0908</identifier><identifier>DOI: 10.1038/s41561-022-00978-3</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/106/2738 ; 704/106/413 ; Anthropogenic factors ; Biogeochemistry ; Carbon ; Carbon budget ; Carbon content ; Carbon isotopes ; Circulation patterns ; Climate change ; Climate models ; Deep water ; Deep water formation ; Dissolved inorganic carbon ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Future climates ; Geochemistry ; Geology ; Geophysics/Geodesy ; Isotopes ; Modelling ; Ocean circulation ; Ocean currents ; Oceans ; Pliocene ; Records ; Uptake ; Water circulation ; Water masses</subject><ispartof>Nature geoscience, 2022-08, Vol.15 (8), p.658-663</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-97da23d05276dbc70328a920fd473575aa7b9b32ecfcc6e5f48fe386cdf38e643</citedby><cites>FETCH-LOGICAL-a386t-97da23d05276dbc70328a920fd473575aa7b9b32ecfcc6e5f48fe386cdf38e643</cites><orcidid>0000-0002-6951-7126 ; 0000-0002-6580-2579 ; 0000-0002-8081-7023 ; 0000-0002-6950-3808 ; 0000-0001-5428-1117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41561-022-00978-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41561-022-00978-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Ford, H. L.</creatorcontrib><creatorcontrib>Burls, N. J.</creatorcontrib><creatorcontrib>Jacobs, P.</creatorcontrib><creatorcontrib>Jahn, A.</creatorcontrib><creatorcontrib>Caballero-Gill, R. P.</creatorcontrib><creatorcontrib>Hodell, D. A.</creatorcontrib><creatorcontrib>Fedorov, A. V.</creatorcontrib><title>Sustained mid-Pliocene warmth led to deep water formation in the North Pacific</title><title>Nature geoscience</title><addtitle>Nat. Geosci</addtitle><description>Geologic intervals of sustained warmth such as the mid-Pliocene Warm Period can inform our understanding of future climate change, including the long-term consequences of oceanic uptake of anthropogenic carbon. Here we generate carbon isotope records and synthesize existing records to reconstruct the position of water masses and determine circulation patterns in the deep Pacific Ocean. We show that the mid-depth carbon isotope gradient in the North Pacific was reversed during the mid-Pliocene compared with today, which implies water flowed from north to south and deep water probably formed in the subarctic North Pacific Deep Water. An isotopically enabled climate model that simulates this North Pacific Deep Water reproduces a similar carbon isotope pattern. Modelled levels of dissolved inorganic carbon content in the North Pacific decrease slightly, although the amount of carbon stored in the ocean actually increases by 1.6% relative to modern due to an increase in dissolved inorganic carbon in the surface ocean. Although the modelled Pliocene ocean maintains a carbon budget similar to the present, the change in deep ocean circulation configuration causes pronounced downstream changes in biogeochemistry.
Marine carbon isotope patterns point to substantial deep water formation in the North Pacific during the mid-Pliocene Warm Period, according to a synthesis of carbon isotope records and isotope-enabled climate modelling.</description><subject>704/106/2738</subject><subject>704/106/413</subject><subject>Anthropogenic factors</subject><subject>Biogeochemistry</subject><subject>Carbon</subject><subject>Carbon budget</subject><subject>Carbon content</subject><subject>Carbon isotopes</subject><subject>Circulation patterns</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Deep water</subject><subject>Deep water formation</subject><subject>Dissolved inorganic carbon</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Future climates</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Isotopes</subject><subject>Modelling</subject><subject>Ocean circulation</subject><subject>Ocean currents</subject><subject>Oceans</subject><subject>Pliocene</subject><subject>Records</subject><subject>Uptake</subject><subject>Water circulation</subject><subject>Water masses</subject><issn>1752-0894</issn><issn>1752-0908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXA9eidZDLJLKX4AqkFdR3SPGxKZ1KTFPHfmzqKO1f33sM558KH0HkNlzVQcZWamrV1BYRUAB0XFT1Ak5qzcnYgDn930TXH6CSlNUALDWcTNH_epaz8YA3uvakWGx-0HSz-ULHPK7wpeg7YWLstUrYRuxB7lX0YsB9wXlk8D7EYF0p75_UpOnJqk-zZz5yi19ubl9l99fh09zC7fqwUFW2uOm4UoQYY4a1Zag6UCNURcKbhlHGmFF92S0qsdlq3lrlGOFuS2jgqbNvQKboYe7cxvO9synIddnEoLyXhAA2roaPFRUaXjiGlaJ3cRt-r-ClrkHtucuQmCzf5zU3uQ3QMpWIe3mz8q_4n9QXCFHAn</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Ford, H. L.</creator><creator>Burls, N. J.</creator><creator>Jacobs, P.</creator><creator>Jahn, A.</creator><creator>Caballero-Gill, R. P.</creator><creator>Hodell, D. A.</creator><creator>Fedorov, A. V.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FE</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>LK8</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-6951-7126</orcidid><orcidid>https://orcid.org/0000-0002-6580-2579</orcidid><orcidid>https://orcid.org/0000-0002-8081-7023</orcidid><orcidid>https://orcid.org/0000-0002-6950-3808</orcidid><orcidid>https://orcid.org/0000-0001-5428-1117</orcidid></search><sort><creationdate>20220801</creationdate><title>Sustained mid-Pliocene warmth led to deep water formation in the North Pacific</title><author>Ford, H. L. ; Burls, N. J. ; Jacobs, P. ; Jahn, A. ; Caballero-Gill, R. P. ; Hodell, D. A. ; Fedorov, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-97da23d05276dbc70328a920fd473575aa7b9b32ecfcc6e5f48fe386cdf38e643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>704/106/2738</topic><topic>704/106/413</topic><topic>Anthropogenic factors</topic><topic>Biogeochemistry</topic><topic>Carbon</topic><topic>Carbon budget</topic><topic>Carbon content</topic><topic>Carbon isotopes</topic><topic>Circulation patterns</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Deep water</topic><topic>Deep water formation</topic><topic>Dissolved inorganic carbon</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Future climates</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Isotopes</topic><topic>Modelling</topic><topic>Ocean circulation</topic><topic>Ocean currents</topic><topic>Oceans</topic><topic>Pliocene</topic><topic>Records</topic><topic>Uptake</topic><topic>Water circulation</topic><topic>Water masses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ford, H. L.</creatorcontrib><creatorcontrib>Burls, N. J.</creatorcontrib><creatorcontrib>Jacobs, P.</creatorcontrib><creatorcontrib>Jahn, A.</creatorcontrib><creatorcontrib>Caballero-Gill, R. P.</creatorcontrib><creatorcontrib>Hodell, D. A.</creatorcontrib><creatorcontrib>Fedorov, A. V.</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Nature geoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ford, H. L.</au><au>Burls, N. J.</au><au>Jacobs, P.</au><au>Jahn, A.</au><au>Caballero-Gill, R. P.</au><au>Hodell, D. A.</au><au>Fedorov, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sustained mid-Pliocene warmth led to deep water formation in the North Pacific</atitle><jtitle>Nature geoscience</jtitle><stitle>Nat. Geosci</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>15</volume><issue>8</issue><spage>658</spage><epage>663</epage><pages>658-663</pages><issn>1752-0894</issn><eissn>1752-0908</eissn><abstract>Geologic intervals of sustained warmth such as the mid-Pliocene Warm Period can inform our understanding of future climate change, including the long-term consequences of oceanic uptake of anthropogenic carbon. Here we generate carbon isotope records and synthesize existing records to reconstruct the position of water masses and determine circulation patterns in the deep Pacific Ocean. We show that the mid-depth carbon isotope gradient in the North Pacific was reversed during the mid-Pliocene compared with today, which implies water flowed from north to south and deep water probably formed in the subarctic North Pacific Deep Water. An isotopically enabled climate model that simulates this North Pacific Deep Water reproduces a similar carbon isotope pattern. Modelled levels of dissolved inorganic carbon content in the North Pacific decrease slightly, although the amount of carbon stored in the ocean actually increases by 1.6% relative to modern due to an increase in dissolved inorganic carbon in the surface ocean. Although the modelled Pliocene ocean maintains a carbon budget similar to the present, the change in deep ocean circulation configuration causes pronounced downstream changes in biogeochemistry.
Marine carbon isotope patterns point to substantial deep water formation in the North Pacific during the mid-Pliocene Warm Period, according to a synthesis of carbon isotope records and isotope-enabled climate modelling.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41561-022-00978-3</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6951-7126</orcidid><orcidid>https://orcid.org/0000-0002-6580-2579</orcidid><orcidid>https://orcid.org/0000-0002-8081-7023</orcidid><orcidid>https://orcid.org/0000-0002-6950-3808</orcidid><orcidid>https://orcid.org/0000-0001-5428-1117</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1752-0894 |
ispartof | Nature geoscience, 2022-08, Vol.15 (8), p.658-663 |
issn | 1752-0894 1752-0908 |
language | eng |
recordid | cdi_proquest_journals_2700451093 |
source | SpringerLink Journals - AutoHoldings |
subjects | 704/106/2738 704/106/413 Anthropogenic factors Biogeochemistry Carbon Carbon budget Carbon content Carbon isotopes Circulation patterns Climate change Climate models Deep water Deep water formation Dissolved inorganic carbon Earth and Environmental Science Earth Sciences Earth System Sciences Future climates Geochemistry Geology Geophysics/Geodesy Isotopes Modelling Ocean circulation Ocean currents Oceans Pliocene Records Uptake Water circulation Water masses |
title | Sustained mid-Pliocene warmth led to deep water formation in the North Pacific |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A25%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sustained%20mid-Pliocene%20warmth%20led%20to%20deep%20water%20formation%20in%20the%20North%20Pacific&rft.jtitle=Nature%20geoscience&rft.au=Ford,%20H.%20L.&rft.date=2022-08-01&rft.volume=15&rft.issue=8&rft.spage=658&rft.epage=663&rft.pages=658-663&rft.issn=1752-0894&rft.eissn=1752-0908&rft_id=info:doi/10.1038/s41561-022-00978-3&rft_dat=%3Cproquest_cross%3E2700451093%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700451093&rft_id=info:pmid/&rfr_iscdi=true |