Sustained mid-Pliocene warmth led to deep water formation in the North Pacific

Geologic intervals of sustained warmth such as the mid-Pliocene Warm Period can inform our understanding of future climate change, including the long-term consequences of oceanic uptake of anthropogenic carbon. Here we generate carbon isotope records and synthesize existing records to reconstruct th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature geoscience 2022-08, Vol.15 (8), p.658-663
Hauptverfasser: Ford, H. L., Burls, N. J., Jacobs, P., Jahn, A., Caballero-Gill, R. P., Hodell, D. A., Fedorov, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 663
container_issue 8
container_start_page 658
container_title Nature geoscience
container_volume 15
creator Ford, H. L.
Burls, N. J.
Jacobs, P.
Jahn, A.
Caballero-Gill, R. P.
Hodell, D. A.
Fedorov, A. V.
description Geologic intervals of sustained warmth such as the mid-Pliocene Warm Period can inform our understanding of future climate change, including the long-term consequences of oceanic uptake of anthropogenic carbon. Here we generate carbon isotope records and synthesize existing records to reconstruct the position of water masses and determine circulation patterns in the deep Pacific Ocean. We show that the mid-depth carbon isotope gradient in the North Pacific was reversed during the mid-Pliocene compared with today, which implies water flowed from north to south and deep water probably formed in the subarctic North Pacific Deep Water. An isotopically enabled climate model that simulates this North Pacific Deep Water reproduces a similar carbon isotope pattern. Modelled levels of dissolved inorganic carbon content in the North Pacific decrease slightly, although the amount of carbon stored in the ocean actually increases by 1.6% relative to modern due to an increase in dissolved inorganic carbon in the surface ocean. Although the modelled Pliocene ocean maintains a carbon budget similar to the present, the change in deep ocean circulation configuration causes pronounced downstream changes in biogeochemistry. Marine carbon isotope patterns point to substantial deep water formation in the North Pacific during the mid-Pliocene Warm Period, according to a synthesis of carbon isotope records and isotope-enabled climate modelling.
doi_str_mv 10.1038/s41561-022-00978-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2700451093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700451093</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-97da23d05276dbc70328a920fd473575aa7b9b32ecfcc6e5f48fe386cdf38e643</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXA9eidZDLJLKX4AqkFdR3SPGxKZ1KTFPHfmzqKO1f33sM558KH0HkNlzVQcZWamrV1BYRUAB0XFT1Ak5qzcnYgDn930TXH6CSlNUALDWcTNH_epaz8YA3uvakWGx-0HSz-ULHPK7wpeg7YWLstUrYRuxB7lX0YsB9wXlk8D7EYF0p75_UpOnJqk-zZz5yi19ubl9l99fh09zC7fqwUFW2uOm4UoQYY4a1Zag6UCNURcKbhlHGmFF92S0qsdlq3lrlGOFuS2jgqbNvQKboYe7cxvO9synIddnEoLyXhAA2roaPFRUaXjiGlaJ3cRt-r-ClrkHtucuQmCzf5zU3uQ3QMpWIe3mz8q_4n9QXCFHAn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700451093</pqid></control><display><type>article</type><title>Sustained mid-Pliocene warmth led to deep water formation in the North Pacific</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ford, H. L. ; Burls, N. J. ; Jacobs, P. ; Jahn, A. ; Caballero-Gill, R. P. ; Hodell, D. A. ; Fedorov, A. V.</creator><creatorcontrib>Ford, H. L. ; Burls, N. J. ; Jacobs, P. ; Jahn, A. ; Caballero-Gill, R. P. ; Hodell, D. A. ; Fedorov, A. V.</creatorcontrib><description>Geologic intervals of sustained warmth such as the mid-Pliocene Warm Period can inform our understanding of future climate change, including the long-term consequences of oceanic uptake of anthropogenic carbon. Here we generate carbon isotope records and synthesize existing records to reconstruct the position of water masses and determine circulation patterns in the deep Pacific Ocean. We show that the mid-depth carbon isotope gradient in the North Pacific was reversed during the mid-Pliocene compared with today, which implies water flowed from north to south and deep water probably formed in the subarctic North Pacific Deep Water. An isotopically enabled climate model that simulates this North Pacific Deep Water reproduces a similar carbon isotope pattern. Modelled levels of dissolved inorganic carbon content in the North Pacific decrease slightly, although the amount of carbon stored in the ocean actually increases by 1.6% relative to modern due to an increase in dissolved inorganic carbon in the surface ocean. Although the modelled Pliocene ocean maintains a carbon budget similar to the present, the change in deep ocean circulation configuration causes pronounced downstream changes in biogeochemistry. Marine carbon isotope patterns point to substantial deep water formation in the North Pacific during the mid-Pliocene Warm Period, according to a synthesis of carbon isotope records and isotope-enabled climate modelling.</description><identifier>ISSN: 1752-0894</identifier><identifier>EISSN: 1752-0908</identifier><identifier>DOI: 10.1038/s41561-022-00978-3</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/106/2738 ; 704/106/413 ; Anthropogenic factors ; Biogeochemistry ; Carbon ; Carbon budget ; Carbon content ; Carbon isotopes ; Circulation patterns ; Climate change ; Climate models ; Deep water ; Deep water formation ; Dissolved inorganic carbon ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Future climates ; Geochemistry ; Geology ; Geophysics/Geodesy ; Isotopes ; Modelling ; Ocean circulation ; Ocean currents ; Oceans ; Pliocene ; Records ; Uptake ; Water circulation ; Water masses</subject><ispartof>Nature geoscience, 2022-08, Vol.15 (8), p.658-663</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-97da23d05276dbc70328a920fd473575aa7b9b32ecfcc6e5f48fe386cdf38e643</citedby><cites>FETCH-LOGICAL-a386t-97da23d05276dbc70328a920fd473575aa7b9b32ecfcc6e5f48fe386cdf38e643</cites><orcidid>0000-0002-6951-7126 ; 0000-0002-6580-2579 ; 0000-0002-8081-7023 ; 0000-0002-6950-3808 ; 0000-0001-5428-1117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41561-022-00978-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41561-022-00978-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Ford, H. L.</creatorcontrib><creatorcontrib>Burls, N. J.</creatorcontrib><creatorcontrib>Jacobs, P.</creatorcontrib><creatorcontrib>Jahn, A.</creatorcontrib><creatorcontrib>Caballero-Gill, R. P.</creatorcontrib><creatorcontrib>Hodell, D. A.</creatorcontrib><creatorcontrib>Fedorov, A. V.</creatorcontrib><title>Sustained mid-Pliocene warmth led to deep water formation in the North Pacific</title><title>Nature geoscience</title><addtitle>Nat. Geosci</addtitle><description>Geologic intervals of sustained warmth such as the mid-Pliocene Warm Period can inform our understanding of future climate change, including the long-term consequences of oceanic uptake of anthropogenic carbon. Here we generate carbon isotope records and synthesize existing records to reconstruct the position of water masses and determine circulation patterns in the deep Pacific Ocean. We show that the mid-depth carbon isotope gradient in the North Pacific was reversed during the mid-Pliocene compared with today, which implies water flowed from north to south and deep water probably formed in the subarctic North Pacific Deep Water. An isotopically enabled climate model that simulates this North Pacific Deep Water reproduces a similar carbon isotope pattern. Modelled levels of dissolved inorganic carbon content in the North Pacific decrease slightly, although the amount of carbon stored in the ocean actually increases by 1.6% relative to modern due to an increase in dissolved inorganic carbon in the surface ocean. Although the modelled Pliocene ocean maintains a carbon budget similar to the present, the change in deep ocean circulation configuration causes pronounced downstream changes in biogeochemistry. Marine carbon isotope patterns point to substantial deep water formation in the North Pacific during the mid-Pliocene Warm Period, according to a synthesis of carbon isotope records and isotope-enabled climate modelling.</description><subject>704/106/2738</subject><subject>704/106/413</subject><subject>Anthropogenic factors</subject><subject>Biogeochemistry</subject><subject>Carbon</subject><subject>Carbon budget</subject><subject>Carbon content</subject><subject>Carbon isotopes</subject><subject>Circulation patterns</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Deep water</subject><subject>Deep water formation</subject><subject>Dissolved inorganic carbon</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Future climates</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Isotopes</subject><subject>Modelling</subject><subject>Ocean circulation</subject><subject>Ocean currents</subject><subject>Oceans</subject><subject>Pliocene</subject><subject>Records</subject><subject>Uptake</subject><subject>Water circulation</subject><subject>Water masses</subject><issn>1752-0894</issn><issn>1752-0908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXA9eidZDLJLKX4AqkFdR3SPGxKZ1KTFPHfmzqKO1f33sM558KH0HkNlzVQcZWamrV1BYRUAB0XFT1Ak5qzcnYgDn930TXH6CSlNUALDWcTNH_epaz8YA3uvakWGx-0HSz-ULHPK7wpeg7YWLstUrYRuxB7lX0YsB9wXlk8D7EYF0p75_UpOnJqk-zZz5yi19ubl9l99fh09zC7fqwUFW2uOm4UoQYY4a1Zag6UCNURcKbhlHGmFF92S0qsdlq3lrlGOFuS2jgqbNvQKboYe7cxvO9synIddnEoLyXhAA2roaPFRUaXjiGlaJ3cRt-r-ClrkHtucuQmCzf5zU3uQ3QMpWIe3mz8q_4n9QXCFHAn</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Ford, H. L.</creator><creator>Burls, N. J.</creator><creator>Jacobs, P.</creator><creator>Jahn, A.</creator><creator>Caballero-Gill, R. P.</creator><creator>Hodell, D. A.</creator><creator>Fedorov, A. V.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FE</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>LK8</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-6951-7126</orcidid><orcidid>https://orcid.org/0000-0002-6580-2579</orcidid><orcidid>https://orcid.org/0000-0002-8081-7023</orcidid><orcidid>https://orcid.org/0000-0002-6950-3808</orcidid><orcidid>https://orcid.org/0000-0001-5428-1117</orcidid></search><sort><creationdate>20220801</creationdate><title>Sustained mid-Pliocene warmth led to deep water formation in the North Pacific</title><author>Ford, H. L. ; Burls, N. J. ; Jacobs, P. ; Jahn, A. ; Caballero-Gill, R. P. ; Hodell, D. A. ; Fedorov, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-97da23d05276dbc70328a920fd473575aa7b9b32ecfcc6e5f48fe386cdf38e643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>704/106/2738</topic><topic>704/106/413</topic><topic>Anthropogenic factors</topic><topic>Biogeochemistry</topic><topic>Carbon</topic><topic>Carbon budget</topic><topic>Carbon content</topic><topic>Carbon isotopes</topic><topic>Circulation patterns</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Deep water</topic><topic>Deep water formation</topic><topic>Dissolved inorganic carbon</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Future climates</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Isotopes</topic><topic>Modelling</topic><topic>Ocean circulation</topic><topic>Ocean currents</topic><topic>Oceans</topic><topic>Pliocene</topic><topic>Records</topic><topic>Uptake</topic><topic>Water circulation</topic><topic>Water masses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ford, H. L.</creatorcontrib><creatorcontrib>Burls, N. J.</creatorcontrib><creatorcontrib>Jacobs, P.</creatorcontrib><creatorcontrib>Jahn, A.</creatorcontrib><creatorcontrib>Caballero-Gill, R. P.</creatorcontrib><creatorcontrib>Hodell, D. A.</creatorcontrib><creatorcontrib>Fedorov, A. V.</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Nature geoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ford, H. L.</au><au>Burls, N. J.</au><au>Jacobs, P.</au><au>Jahn, A.</au><au>Caballero-Gill, R. P.</au><au>Hodell, D. A.</au><au>Fedorov, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sustained mid-Pliocene warmth led to deep water formation in the North Pacific</atitle><jtitle>Nature geoscience</jtitle><stitle>Nat. Geosci</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>15</volume><issue>8</issue><spage>658</spage><epage>663</epage><pages>658-663</pages><issn>1752-0894</issn><eissn>1752-0908</eissn><abstract>Geologic intervals of sustained warmth such as the mid-Pliocene Warm Period can inform our understanding of future climate change, including the long-term consequences of oceanic uptake of anthropogenic carbon. Here we generate carbon isotope records and synthesize existing records to reconstruct the position of water masses and determine circulation patterns in the deep Pacific Ocean. We show that the mid-depth carbon isotope gradient in the North Pacific was reversed during the mid-Pliocene compared with today, which implies water flowed from north to south and deep water probably formed in the subarctic North Pacific Deep Water. An isotopically enabled climate model that simulates this North Pacific Deep Water reproduces a similar carbon isotope pattern. Modelled levels of dissolved inorganic carbon content in the North Pacific decrease slightly, although the amount of carbon stored in the ocean actually increases by 1.6% relative to modern due to an increase in dissolved inorganic carbon in the surface ocean. Although the modelled Pliocene ocean maintains a carbon budget similar to the present, the change in deep ocean circulation configuration causes pronounced downstream changes in biogeochemistry. Marine carbon isotope patterns point to substantial deep water formation in the North Pacific during the mid-Pliocene Warm Period, according to a synthesis of carbon isotope records and isotope-enabled climate modelling.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41561-022-00978-3</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6951-7126</orcidid><orcidid>https://orcid.org/0000-0002-6580-2579</orcidid><orcidid>https://orcid.org/0000-0002-8081-7023</orcidid><orcidid>https://orcid.org/0000-0002-6950-3808</orcidid><orcidid>https://orcid.org/0000-0001-5428-1117</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1752-0894
ispartof Nature geoscience, 2022-08, Vol.15 (8), p.658-663
issn 1752-0894
1752-0908
language eng
recordid cdi_proquest_journals_2700451093
source SpringerLink Journals - AutoHoldings
subjects 704/106/2738
704/106/413
Anthropogenic factors
Biogeochemistry
Carbon
Carbon budget
Carbon content
Carbon isotopes
Circulation patterns
Climate change
Climate models
Deep water
Deep water formation
Dissolved inorganic carbon
Earth and Environmental Science
Earth Sciences
Earth System Sciences
Future climates
Geochemistry
Geology
Geophysics/Geodesy
Isotopes
Modelling
Ocean circulation
Ocean currents
Oceans
Pliocene
Records
Uptake
Water circulation
Water masses
title Sustained mid-Pliocene warmth led to deep water formation in the North Pacific
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A25%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sustained%20mid-Pliocene%20warmth%20led%20to%20deep%20water%20formation%20in%20the%20North%20Pacific&rft.jtitle=Nature%20geoscience&rft.au=Ford,%20H.%20L.&rft.date=2022-08-01&rft.volume=15&rft.issue=8&rft.spage=658&rft.epage=663&rft.pages=658-663&rft.issn=1752-0894&rft.eissn=1752-0908&rft_id=info:doi/10.1038/s41561-022-00978-3&rft_dat=%3Cproquest_cross%3E2700451093%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700451093&rft_id=info:pmid/&rfr_iscdi=true