Flows of G2-structures on contact Calabi–Yau 7-manifolds

We study the Laplacian flow and coflow on contact Calabi–Yau 7-manifolds. We show that the natural initial condition leads to an ancient solution of the Laplacian flow with a finite time Type I singularity which is not a soliton, whereas it produces an immortal (though neither eternal nor self-simil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of global analysis and geometry 2022-09, Vol.62 (2), p.367-389
Hauptverfasser: Lotay, Jason D., Sá Earp, Henrique N., Saavedra, Julieth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 389
container_issue 2
container_start_page 367
container_title Annals of global analysis and geometry
container_volume 62
creator Lotay, Jason D.
Sá Earp, Henrique N.
Saavedra, Julieth
description We study the Laplacian flow and coflow on contact Calabi–Yau 7-manifolds. We show that the natural initial condition leads to an ancient solution of the Laplacian flow with a finite time Type I singularity which is not a soliton, whereas it produces an immortal (though neither eternal nor self-similar) solution of the Laplacian coflow which has an infinite time singularity of Type IIb, unless the transverse Calabi–Yau geometry is flat. The flows in each case collapse (under normalised volume) to a lower-dimensional limit, which is either R , for the Laplacian flow, or standard C 3 , for the Laplacian coflow. We also study the Hitchin flow in this setting, which we show coincides with the Laplacian coflow, up to reparametrisation of time, and defines an (incomplete) Calabi–Yau structure on the spacetime track of the flow.
doi_str_mv 10.1007/s10455-022-09854-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2700444554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700444554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b8d687d2e63f4514e3b2d0dbaac10d99cbc098dd777b6ad5a07258316a7258bc3</originalsourceid><addsrcrecordid>eNp9kM1Kw0AUhQdRsFZfwFXA9eidv0ziToqtQsGNgq6G-Yu0pJk6kyDufAffsE_i1AjuXB24nHPuvR9C5wQuCYC8SgS4EBgoxVBXgmM4QBMiJMU1lHCIJkAZxRL48zE6SWkNAIIRMkHX8za8pyI0xYLi1MfB9kP0edAVNnS9tn0x0602q93n14seCok3uls1oXXpFB01uk3-7Fen6Gl--zi7w8uHxf3sZoktI3WPTeXKSjrqS9ZwQbhnhjpwRmtLwNW1NTaf7JyU0pTaCQ2SioqRUu_VWDZFF2PvNoa3wadercMQu7xSUQnAef6cZxcdXTaGlKJv1DauNjp-KAJqz0iNjFRmpH4YKcghNoZSNnevPv5V_5P6Bi3faTM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700444554</pqid></control><display><type>article</type><title>Flows of G2-structures on contact Calabi–Yau 7-manifolds</title><source>SpringerLink Journals</source><creator>Lotay, Jason D. ; Sá Earp, Henrique N. ; Saavedra, Julieth</creator><creatorcontrib>Lotay, Jason D. ; Sá Earp, Henrique N. ; Saavedra, Julieth</creatorcontrib><description>We study the Laplacian flow and coflow on contact Calabi–Yau 7-manifolds. We show that the natural initial condition leads to an ancient solution of the Laplacian flow with a finite time Type I singularity which is not a soliton, whereas it produces an immortal (though neither eternal nor self-similar) solution of the Laplacian coflow which has an infinite time singularity of Type IIb, unless the transverse Calabi–Yau geometry is flat. The flows in each case collapse (under normalised volume) to a lower-dimensional limit, which is either R , for the Laplacian flow, or standard C 3 , for the Laplacian coflow. We also study the Hitchin flow in this setting, which we show coincides with the Laplacian coflow, up to reparametrisation of time, and defines an (incomplete) Calabi–Yau structure on the spacetime track of the flow.</description><identifier>ISSN: 0232-704X</identifier><identifier>EISSN: 1572-9060</identifier><identifier>DOI: 10.1007/s10455-022-09854-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Differential Geometry ; Geometry ; Global Analysis and Analysis on Manifolds ; Manifolds (mathematics) ; Mathematical Physics ; Mathematics ; Mathematics and Statistics ; Self-similarity ; Singularities ; Solitary waves</subject><ispartof>Annals of global analysis and geometry, 2022-09, Vol.62 (2), p.367-389</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b8d687d2e63f4514e3b2d0dbaac10d99cbc098dd777b6ad5a07258316a7258bc3</citedby><cites>FETCH-LOGICAL-c319t-b8d687d2e63f4514e3b2d0dbaac10d99cbc098dd777b6ad5a07258316a7258bc3</cites><orcidid>0000-0003-0475-4494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10455-022-09854-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10455-022-09854-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lotay, Jason D.</creatorcontrib><creatorcontrib>Sá Earp, Henrique N.</creatorcontrib><creatorcontrib>Saavedra, Julieth</creatorcontrib><title>Flows of G2-structures on contact Calabi–Yau 7-manifolds</title><title>Annals of global analysis and geometry</title><addtitle>Ann Glob Anal Geom</addtitle><description>We study the Laplacian flow and coflow on contact Calabi–Yau 7-manifolds. We show that the natural initial condition leads to an ancient solution of the Laplacian flow with a finite time Type I singularity which is not a soliton, whereas it produces an immortal (though neither eternal nor self-similar) solution of the Laplacian coflow which has an infinite time singularity of Type IIb, unless the transverse Calabi–Yau geometry is flat. The flows in each case collapse (under normalised volume) to a lower-dimensional limit, which is either R , for the Laplacian flow, or standard C 3 , for the Laplacian coflow. We also study the Hitchin flow in this setting, which we show coincides with the Laplacian coflow, up to reparametrisation of time, and defines an (incomplete) Calabi–Yau structure on the spacetime track of the flow.</description><subject>Analysis</subject><subject>Differential Geometry</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Self-similarity</subject><subject>Singularities</subject><subject>Solitary waves</subject><issn>0232-704X</issn><issn>1572-9060</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1Kw0AUhQdRsFZfwFXA9eidv0ziToqtQsGNgq6G-Yu0pJk6kyDufAffsE_i1AjuXB24nHPuvR9C5wQuCYC8SgS4EBgoxVBXgmM4QBMiJMU1lHCIJkAZxRL48zE6SWkNAIIRMkHX8za8pyI0xYLi1MfB9kP0edAVNnS9tn0x0602q93n14seCok3uls1oXXpFB01uk3-7Fen6Gl--zi7w8uHxf3sZoktI3WPTeXKSjrqS9ZwQbhnhjpwRmtLwNW1NTaf7JyU0pTaCQ2SioqRUu_VWDZFF2PvNoa3wadercMQu7xSUQnAef6cZxcdXTaGlKJv1DauNjp-KAJqz0iNjFRmpH4YKcghNoZSNnevPv5V_5P6Bi3faTM</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Lotay, Jason D.</creator><creator>Sá Earp, Henrique N.</creator><creator>Saavedra, Julieth</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0475-4494</orcidid></search><sort><creationdate>20220901</creationdate><title>Flows of G2-structures on contact Calabi–Yau 7-manifolds</title><author>Lotay, Jason D. ; Sá Earp, Henrique N. ; Saavedra, Julieth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b8d687d2e63f4514e3b2d0dbaac10d99cbc098dd777b6ad5a07258316a7258bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Differential Geometry</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Self-similarity</topic><topic>Singularities</topic><topic>Solitary waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lotay, Jason D.</creatorcontrib><creatorcontrib>Sá Earp, Henrique N.</creatorcontrib><creatorcontrib>Saavedra, Julieth</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of global analysis and geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lotay, Jason D.</au><au>Sá Earp, Henrique N.</au><au>Saavedra, Julieth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flows of G2-structures on contact Calabi–Yau 7-manifolds</atitle><jtitle>Annals of global analysis and geometry</jtitle><stitle>Ann Glob Anal Geom</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>62</volume><issue>2</issue><spage>367</spage><epage>389</epage><pages>367-389</pages><issn>0232-704X</issn><eissn>1572-9060</eissn><abstract>We study the Laplacian flow and coflow on contact Calabi–Yau 7-manifolds. We show that the natural initial condition leads to an ancient solution of the Laplacian flow with a finite time Type I singularity which is not a soliton, whereas it produces an immortal (though neither eternal nor self-similar) solution of the Laplacian coflow which has an infinite time singularity of Type IIb, unless the transverse Calabi–Yau geometry is flat. The flows in each case collapse (under normalised volume) to a lower-dimensional limit, which is either R , for the Laplacian flow, or standard C 3 , for the Laplacian coflow. We also study the Hitchin flow in this setting, which we show coincides with the Laplacian coflow, up to reparametrisation of time, and defines an (incomplete) Calabi–Yau structure on the spacetime track of the flow.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10455-022-09854-0</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-0475-4494</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0232-704X
ispartof Annals of global analysis and geometry, 2022-09, Vol.62 (2), p.367-389
issn 0232-704X
1572-9060
language eng
recordid cdi_proquest_journals_2700444554
source SpringerLink Journals
subjects Analysis
Differential Geometry
Geometry
Global Analysis and Analysis on Manifolds
Manifolds (mathematics)
Mathematical Physics
Mathematics
Mathematics and Statistics
Self-similarity
Singularities
Solitary waves
title Flows of G2-structures on contact Calabi–Yau 7-manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A56%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flows%20of%20G2-structures%20on%20contact%20Calabi%E2%80%93Yau%207-manifolds&rft.jtitle=Annals%20of%20global%20analysis%20and%20geometry&rft.au=Lotay,%20Jason%20D.&rft.date=2022-09-01&rft.volume=62&rft.issue=2&rft.spage=367&rft.epage=389&rft.pages=367-389&rft.issn=0232-704X&rft.eissn=1572-9060&rft_id=info:doi/10.1007/s10455-022-09854-0&rft_dat=%3Cproquest_cross%3E2700444554%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700444554&rft_id=info:pmid/&rfr_iscdi=true