TransCloudSeg: Ground-Based Cloud Image Segmentation With Transformer

Cloud image segmentation plays an important role in ground-based cloud observation. Recently, most existing methods for ground-based cloud image segmentation learn feature representations using the convolutional neural network (CNN), which results in the loss of global information because of the lim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2022, Vol.15, p.6121-6132
Hauptverfasser: Liu, Shuang, Zhang, Jiafeng, Zhang, Zhong, Cao, Xiaozhong, Durrani, Tariq S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6132
container_issue
container_start_page 6121
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 15
creator Liu, Shuang
Zhang, Jiafeng
Zhang, Zhong
Cao, Xiaozhong
Durrani, Tariq S.
description Cloud image segmentation plays an important role in ground-based cloud observation. Recently, most existing methods for ground-based cloud image segmentation learn feature representations using the convolutional neural network (CNN), which results in the loss of global information because of the limited receptive field size of the filters in the CNN. In this article, we propose a novel deep model named TransCloudSeg, which makes full use of the advantages of the CNN and transformer to extract detailed information and global contextual information for ground-based cloud image segmentation. Specifically, TransCloudSeg hybridizes the CNN and transformer as the encoders to obtain different features. To recover and fuse the feature maps from the encoders, we design the CNN decoder and the transformer decoder for TransCloudSeg. After obtaining two sets of feature maps from two different decoders, we propose the heterogeneous fusion module to effectively fuse the heterogeneous feature maps by applying the self-attention mechanism. We conduct a series of experiments on Tianjin Normal University large-scale cloud detection database and Tianjin Normal University cloud detection database, and the results show that our method achieves a better performance than other state-of-the-art methods, thus proving the effectiveness of the proposed TransCloudSeg.
doi_str_mv 10.1109/JSTARS.2022.3194316
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2700416859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9842308</ieee_id><doaj_id>oai_doaj_org_article_1155b824de8b4306ba116275c82ec92f</doaj_id><sourcerecordid>2700416859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-37bcdc696a4079837ff5fdd94f10f838dafb1e0dc9b2bf40bc77f717722567fb3</originalsourceid><addsrcrecordid>eNo9kElPwzAQhS0EEmX5Bb1E4pzi8RLb3ErFUoSERIs4Wl5LqjYGJz3w70mbitNIb-Z7M_MQGgOeAGB1-7JYTt8XE4IJmVBQjEJ1gkYEOJTAKT9FI1BUlcAwO0cXbbvGuCJC0RF6WGbTtLNN2vlFWN0VTzntGl_emzb44iAX861ZhaLvbkPTma5OTfFZd1_FgYwpb0O-QmfRbNpwfayX6OPxYTl7Ll_fnuaz6WvpGJZdSYV13lWqMgwLJamIkUfvFYuAo6TSm2ghYO-UJTYybJ0QUYAQhPBKREsv0Xzw9cms9Xeutyb_6mRqfRBSXmmTu9ptggbg3ErCfJCWUVxZA9D_zJ0kwSkSe6-bwes7p59daDu9Trvc9OdrIjBmUEmu-ik6TLmc2jaH-L8VsN5nr4fs9T57fcy-p8YDVYcQ_gklGaFY0j_X_39V</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700416859</pqid></control><display><type>article</type><title>TransCloudSeg: Ground-Based Cloud Image Segmentation With Transformer</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Liu, Shuang ; Zhang, Jiafeng ; Zhang, Zhong ; Cao, Xiaozhong ; Durrani, Tariq S.</creator><creatorcontrib>Liu, Shuang ; Zhang, Jiafeng ; Zhang, Zhong ; Cao, Xiaozhong ; Durrani, Tariq S.</creatorcontrib><description>Cloud image segmentation plays an important role in ground-based cloud observation. Recently, most existing methods for ground-based cloud image segmentation learn feature representations using the convolutional neural network (CNN), which results in the loss of global information because of the limited receptive field size of the filters in the CNN. In this article, we propose a novel deep model named TransCloudSeg, which makes full use of the advantages of the CNN and transformer to extract detailed information and global contextual information for ground-based cloud image segmentation. Specifically, TransCloudSeg hybridizes the CNN and transformer as the encoders to obtain different features. To recover and fuse the feature maps from the encoders, we design the CNN decoder and the transformer decoder for TransCloudSeg. After obtaining two sets of feature maps from two different decoders, we propose the heterogeneous fusion module to effectively fuse the heterogeneous feature maps by applying the self-attention mechanism. We conduct a series of experiments on Tianjin Normal University large-scale cloud detection database and Tianjin Normal University cloud detection database, and the results show that our method achieves a better performance than other state-of-the-art methods, thus proving the effectiveness of the proposed TransCloudSeg.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2022.3194316</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; cloud image segmentation ; Clouds ; Coders ; Convolutional neural network (CNN) ; Convolutional neural networks ; Decoders ; Decoding ; Detection ; Feature maps ; Fuses ; Ground-based observation ; heterogeneous feature maps ; Image processing ; Image segmentation ; Information processing ; Methods ; Neural networks ; Receptive field ; Remote sensing ; transformer ; Transformers</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2022, Vol.15, p.6121-6132</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-37bcdc696a4079837ff5fdd94f10f838dafb1e0dc9b2bf40bc77f717722567fb3</citedby><cites>FETCH-LOGICAL-c408t-37bcdc696a4079837ff5fdd94f10f838dafb1e0dc9b2bf40bc77f717722567fb3</cites><orcidid>0000-0002-9027-0690 ; 0000-0001-9544-6731 ; 0000-0002-8813-6118 ; 0000-0002-2993-8612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Zhang, Jiafeng</creatorcontrib><creatorcontrib>Zhang, Zhong</creatorcontrib><creatorcontrib>Cao, Xiaozhong</creatorcontrib><creatorcontrib>Durrani, Tariq S.</creatorcontrib><title>TransCloudSeg: Ground-Based Cloud Image Segmentation With Transformer</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Cloud image segmentation plays an important role in ground-based cloud observation. Recently, most existing methods for ground-based cloud image segmentation learn feature representations using the convolutional neural network (CNN), which results in the loss of global information because of the limited receptive field size of the filters in the CNN. In this article, we propose a novel deep model named TransCloudSeg, which makes full use of the advantages of the CNN and transformer to extract detailed information and global contextual information for ground-based cloud image segmentation. Specifically, TransCloudSeg hybridizes the CNN and transformer as the encoders to obtain different features. To recover and fuse the feature maps from the encoders, we design the CNN decoder and the transformer decoder for TransCloudSeg. After obtaining two sets of feature maps from two different decoders, we propose the heterogeneous fusion module to effectively fuse the heterogeneous feature maps by applying the self-attention mechanism. We conduct a series of experiments on Tianjin Normal University large-scale cloud detection database and Tianjin Normal University cloud detection database, and the results show that our method achieves a better performance than other state-of-the-art methods, thus proving the effectiveness of the proposed TransCloudSeg.</description><subject>Artificial neural networks</subject><subject>cloud image segmentation</subject><subject>Clouds</subject><subject>Coders</subject><subject>Convolutional neural network (CNN)</subject><subject>Convolutional neural networks</subject><subject>Decoders</subject><subject>Decoding</subject><subject>Detection</subject><subject>Feature maps</subject><subject>Fuses</subject><subject>Ground-based observation</subject><subject>heterogeneous feature maps</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Information processing</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Receptive field</subject><subject>Remote sensing</subject><subject>transformer</subject><subject>Transformers</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kElPwzAQhS0EEmX5Bb1E4pzi8RLb3ErFUoSERIs4Wl5LqjYGJz3w70mbitNIb-Z7M_MQGgOeAGB1-7JYTt8XE4IJmVBQjEJ1gkYEOJTAKT9FI1BUlcAwO0cXbbvGuCJC0RF6WGbTtLNN2vlFWN0VTzntGl_emzb44iAX861ZhaLvbkPTma5OTfFZd1_FgYwpb0O-QmfRbNpwfayX6OPxYTl7Ll_fnuaz6WvpGJZdSYV13lWqMgwLJamIkUfvFYuAo6TSm2ghYO-UJTYybJ0QUYAQhPBKREsv0Xzw9cms9Xeutyb_6mRqfRBSXmmTu9ptggbg3ErCfJCWUVxZA9D_zJ0kwSkSe6-bwes7p59daDu9Trvc9OdrIjBmUEmu-ik6TLmc2jaH-L8VsN5nr4fs9T57fcy-p8YDVYcQ_gklGaFY0j_X_39V</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Liu, Shuang</creator><creator>Zhang, Jiafeng</creator><creator>Zhang, Zhong</creator><creator>Cao, Xiaozhong</creator><creator>Durrani, Tariq S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9027-0690</orcidid><orcidid>https://orcid.org/0000-0001-9544-6731</orcidid><orcidid>https://orcid.org/0000-0002-8813-6118</orcidid><orcidid>https://orcid.org/0000-0002-2993-8612</orcidid></search><sort><creationdate>2022</creationdate><title>TransCloudSeg: Ground-Based Cloud Image Segmentation With Transformer</title><author>Liu, Shuang ; Zhang, Jiafeng ; Zhang, Zhong ; Cao, Xiaozhong ; Durrani, Tariq S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-37bcdc696a4079837ff5fdd94f10f838dafb1e0dc9b2bf40bc77f717722567fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>cloud image segmentation</topic><topic>Clouds</topic><topic>Coders</topic><topic>Convolutional neural network (CNN)</topic><topic>Convolutional neural networks</topic><topic>Decoders</topic><topic>Decoding</topic><topic>Detection</topic><topic>Feature maps</topic><topic>Fuses</topic><topic>Ground-based observation</topic><topic>heterogeneous feature maps</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Information processing</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Receptive field</topic><topic>Remote sensing</topic><topic>transformer</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Zhang, Jiafeng</creatorcontrib><creatorcontrib>Zhang, Zhong</creatorcontrib><creatorcontrib>Cao, Xiaozhong</creatorcontrib><creatorcontrib>Durrani, Tariq S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shuang</au><au>Zhang, Jiafeng</au><au>Zhang, Zhong</au><au>Cao, Xiaozhong</au><au>Durrani, Tariq S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TransCloudSeg: Ground-Based Cloud Image Segmentation With Transformer</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2022</date><risdate>2022</risdate><volume>15</volume><spage>6121</spage><epage>6132</epage><pages>6121-6132</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Cloud image segmentation plays an important role in ground-based cloud observation. Recently, most existing methods for ground-based cloud image segmentation learn feature representations using the convolutional neural network (CNN), which results in the loss of global information because of the limited receptive field size of the filters in the CNN. In this article, we propose a novel deep model named TransCloudSeg, which makes full use of the advantages of the CNN and transformer to extract detailed information and global contextual information for ground-based cloud image segmentation. Specifically, TransCloudSeg hybridizes the CNN and transformer as the encoders to obtain different features. To recover and fuse the feature maps from the encoders, we design the CNN decoder and the transformer decoder for TransCloudSeg. After obtaining two sets of feature maps from two different decoders, we propose the heterogeneous fusion module to effectively fuse the heterogeneous feature maps by applying the self-attention mechanism. We conduct a series of experiments on Tianjin Normal University large-scale cloud detection database and Tianjin Normal University cloud detection database, and the results show that our method achieves a better performance than other state-of-the-art methods, thus proving the effectiveness of the proposed TransCloudSeg.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2022.3194316</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9027-0690</orcidid><orcidid>https://orcid.org/0000-0001-9544-6731</orcidid><orcidid>https://orcid.org/0000-0002-8813-6118</orcidid><orcidid>https://orcid.org/0000-0002-2993-8612</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2022, Vol.15, p.6121-6132
issn 1939-1404
2151-1535
language eng
recordid cdi_proquest_journals_2700416859
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Artificial neural networks
cloud image segmentation
Clouds
Coders
Convolutional neural network (CNN)
Convolutional neural networks
Decoders
Decoding
Detection
Feature maps
Fuses
Ground-based observation
heterogeneous feature maps
Image processing
Image segmentation
Information processing
Methods
Neural networks
Receptive field
Remote sensing
transformer
Transformers
title TransCloudSeg: Ground-Based Cloud Image Segmentation With Transformer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A43%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TransCloudSeg:%20Ground-Based%20Cloud%20Image%20Segmentation%20With%20Transformer&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Liu,%20Shuang&rft.date=2022&rft.volume=15&rft.spage=6121&rft.epage=6132&rft.pages=6121-6132&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2022.3194316&rft_dat=%3Cproquest_ieee_%3E2700416859%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700416859&rft_id=info:pmid/&rft_ieee_id=9842308&rft_doaj_id=oai_doaj_org_article_1155b824de8b4306ba116275c82ec92f&rfr_iscdi=true