TransCloudSeg: Ground-Based Cloud Image Segmentation With Transformer
Cloud image segmentation plays an important role in ground-based cloud observation. Recently, most existing methods for ground-based cloud image segmentation learn feature representations using the convolutional neural network (CNN), which results in the loss of global information because of the lim...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2022, Vol.15, p.6121-6132 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6132 |
---|---|
container_issue | |
container_start_page | 6121 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 15 |
creator | Liu, Shuang Zhang, Jiafeng Zhang, Zhong Cao, Xiaozhong Durrani, Tariq S. |
description | Cloud image segmentation plays an important role in ground-based cloud observation. Recently, most existing methods for ground-based cloud image segmentation learn feature representations using the convolutional neural network (CNN), which results in the loss of global information because of the limited receptive field size of the filters in the CNN. In this article, we propose a novel deep model named TransCloudSeg, which makes full use of the advantages of the CNN and transformer to extract detailed information and global contextual information for ground-based cloud image segmentation. Specifically, TransCloudSeg hybridizes the CNN and transformer as the encoders to obtain different features. To recover and fuse the feature maps from the encoders, we design the CNN decoder and the transformer decoder for TransCloudSeg. After obtaining two sets of feature maps from two different decoders, we propose the heterogeneous fusion module to effectively fuse the heterogeneous feature maps by applying the self-attention mechanism. We conduct a series of experiments on Tianjin Normal University large-scale cloud detection database and Tianjin Normal University cloud detection database, and the results show that our method achieves a better performance than other state-of-the-art methods, thus proving the effectiveness of the proposed TransCloudSeg. |
doi_str_mv | 10.1109/JSTARS.2022.3194316 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2700416859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9842308</ieee_id><doaj_id>oai_doaj_org_article_1155b824de8b4306ba116275c82ec92f</doaj_id><sourcerecordid>2700416859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-37bcdc696a4079837ff5fdd94f10f838dafb1e0dc9b2bf40bc77f717722567fb3</originalsourceid><addsrcrecordid>eNo9kElPwzAQhS0EEmX5Bb1E4pzi8RLb3ErFUoSERIs4Wl5LqjYGJz3w70mbitNIb-Z7M_MQGgOeAGB1-7JYTt8XE4IJmVBQjEJ1gkYEOJTAKT9FI1BUlcAwO0cXbbvGuCJC0RF6WGbTtLNN2vlFWN0VTzntGl_emzb44iAX861ZhaLvbkPTma5OTfFZd1_FgYwpb0O-QmfRbNpwfayX6OPxYTl7Ll_fnuaz6WvpGJZdSYV13lWqMgwLJamIkUfvFYuAo6TSm2ghYO-UJTYybJ0QUYAQhPBKREsv0Xzw9cms9Xeutyb_6mRqfRBSXmmTu9ptggbg3ErCfJCWUVxZA9D_zJ0kwSkSe6-bwes7p59daDu9Trvc9OdrIjBmUEmu-ik6TLmc2jaH-L8VsN5nr4fs9T57fcy-p8YDVYcQ_gklGaFY0j_X_39V</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700416859</pqid></control><display><type>article</type><title>TransCloudSeg: Ground-Based Cloud Image Segmentation With Transformer</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Liu, Shuang ; Zhang, Jiafeng ; Zhang, Zhong ; Cao, Xiaozhong ; Durrani, Tariq S.</creator><creatorcontrib>Liu, Shuang ; Zhang, Jiafeng ; Zhang, Zhong ; Cao, Xiaozhong ; Durrani, Tariq S.</creatorcontrib><description>Cloud image segmentation plays an important role in ground-based cloud observation. Recently, most existing methods for ground-based cloud image segmentation learn feature representations using the convolutional neural network (CNN), which results in the loss of global information because of the limited receptive field size of the filters in the CNN. In this article, we propose a novel deep model named TransCloudSeg, which makes full use of the advantages of the CNN and transformer to extract detailed information and global contextual information for ground-based cloud image segmentation. Specifically, TransCloudSeg hybridizes the CNN and transformer as the encoders to obtain different features. To recover and fuse the feature maps from the encoders, we design the CNN decoder and the transformer decoder for TransCloudSeg. After obtaining two sets of feature maps from two different decoders, we propose the heterogeneous fusion module to effectively fuse the heterogeneous feature maps by applying the self-attention mechanism. We conduct a series of experiments on Tianjin Normal University large-scale cloud detection database and Tianjin Normal University cloud detection database, and the results show that our method achieves a better performance than other state-of-the-art methods, thus proving the effectiveness of the proposed TransCloudSeg.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2022.3194316</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; cloud image segmentation ; Clouds ; Coders ; Convolutional neural network (CNN) ; Convolutional neural networks ; Decoders ; Decoding ; Detection ; Feature maps ; Fuses ; Ground-based observation ; heterogeneous feature maps ; Image processing ; Image segmentation ; Information processing ; Methods ; Neural networks ; Receptive field ; Remote sensing ; transformer ; Transformers</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2022, Vol.15, p.6121-6132</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-37bcdc696a4079837ff5fdd94f10f838dafb1e0dc9b2bf40bc77f717722567fb3</citedby><cites>FETCH-LOGICAL-c408t-37bcdc696a4079837ff5fdd94f10f838dafb1e0dc9b2bf40bc77f717722567fb3</cites><orcidid>0000-0002-9027-0690 ; 0000-0001-9544-6731 ; 0000-0002-8813-6118 ; 0000-0002-2993-8612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Zhang, Jiafeng</creatorcontrib><creatorcontrib>Zhang, Zhong</creatorcontrib><creatorcontrib>Cao, Xiaozhong</creatorcontrib><creatorcontrib>Durrani, Tariq S.</creatorcontrib><title>TransCloudSeg: Ground-Based Cloud Image Segmentation With Transformer</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Cloud image segmentation plays an important role in ground-based cloud observation. Recently, most existing methods for ground-based cloud image segmentation learn feature representations using the convolutional neural network (CNN), which results in the loss of global information because of the limited receptive field size of the filters in the CNN. In this article, we propose a novel deep model named TransCloudSeg, which makes full use of the advantages of the CNN and transformer to extract detailed information and global contextual information for ground-based cloud image segmentation. Specifically, TransCloudSeg hybridizes the CNN and transformer as the encoders to obtain different features. To recover and fuse the feature maps from the encoders, we design the CNN decoder and the transformer decoder for TransCloudSeg. After obtaining two sets of feature maps from two different decoders, we propose the heterogeneous fusion module to effectively fuse the heterogeneous feature maps by applying the self-attention mechanism. We conduct a series of experiments on Tianjin Normal University large-scale cloud detection database and Tianjin Normal University cloud detection database, and the results show that our method achieves a better performance than other state-of-the-art methods, thus proving the effectiveness of the proposed TransCloudSeg.</description><subject>Artificial neural networks</subject><subject>cloud image segmentation</subject><subject>Clouds</subject><subject>Coders</subject><subject>Convolutional neural network (CNN)</subject><subject>Convolutional neural networks</subject><subject>Decoders</subject><subject>Decoding</subject><subject>Detection</subject><subject>Feature maps</subject><subject>Fuses</subject><subject>Ground-based observation</subject><subject>heterogeneous feature maps</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Information processing</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Receptive field</subject><subject>Remote sensing</subject><subject>transformer</subject><subject>Transformers</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kElPwzAQhS0EEmX5Bb1E4pzi8RLb3ErFUoSERIs4Wl5LqjYGJz3w70mbitNIb-Z7M_MQGgOeAGB1-7JYTt8XE4IJmVBQjEJ1gkYEOJTAKT9FI1BUlcAwO0cXbbvGuCJC0RF6WGbTtLNN2vlFWN0VTzntGl_emzb44iAX861ZhaLvbkPTma5OTfFZd1_FgYwpb0O-QmfRbNpwfayX6OPxYTl7Ll_fnuaz6WvpGJZdSYV13lWqMgwLJamIkUfvFYuAo6TSm2ghYO-UJTYybJ0QUYAQhPBKREsv0Xzw9cms9Xeutyb_6mRqfRBSXmmTu9ptggbg3ErCfJCWUVxZA9D_zJ0kwSkSe6-bwes7p59daDu9Trvc9OdrIjBmUEmu-ik6TLmc2jaH-L8VsN5nr4fs9T57fcy-p8YDVYcQ_gklGaFY0j_X_39V</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Liu, Shuang</creator><creator>Zhang, Jiafeng</creator><creator>Zhang, Zhong</creator><creator>Cao, Xiaozhong</creator><creator>Durrani, Tariq S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9027-0690</orcidid><orcidid>https://orcid.org/0000-0001-9544-6731</orcidid><orcidid>https://orcid.org/0000-0002-8813-6118</orcidid><orcidid>https://orcid.org/0000-0002-2993-8612</orcidid></search><sort><creationdate>2022</creationdate><title>TransCloudSeg: Ground-Based Cloud Image Segmentation With Transformer</title><author>Liu, Shuang ; Zhang, Jiafeng ; Zhang, Zhong ; Cao, Xiaozhong ; Durrani, Tariq S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-37bcdc696a4079837ff5fdd94f10f838dafb1e0dc9b2bf40bc77f717722567fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>cloud image segmentation</topic><topic>Clouds</topic><topic>Coders</topic><topic>Convolutional neural network (CNN)</topic><topic>Convolutional neural networks</topic><topic>Decoders</topic><topic>Decoding</topic><topic>Detection</topic><topic>Feature maps</topic><topic>Fuses</topic><topic>Ground-based observation</topic><topic>heterogeneous feature maps</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Information processing</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Receptive field</topic><topic>Remote sensing</topic><topic>transformer</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Zhang, Jiafeng</creatorcontrib><creatorcontrib>Zhang, Zhong</creatorcontrib><creatorcontrib>Cao, Xiaozhong</creatorcontrib><creatorcontrib>Durrani, Tariq S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shuang</au><au>Zhang, Jiafeng</au><au>Zhang, Zhong</au><au>Cao, Xiaozhong</au><au>Durrani, Tariq S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TransCloudSeg: Ground-Based Cloud Image Segmentation With Transformer</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2022</date><risdate>2022</risdate><volume>15</volume><spage>6121</spage><epage>6132</epage><pages>6121-6132</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Cloud image segmentation plays an important role in ground-based cloud observation. Recently, most existing methods for ground-based cloud image segmentation learn feature representations using the convolutional neural network (CNN), which results in the loss of global information because of the limited receptive field size of the filters in the CNN. In this article, we propose a novel deep model named TransCloudSeg, which makes full use of the advantages of the CNN and transformer to extract detailed information and global contextual information for ground-based cloud image segmentation. Specifically, TransCloudSeg hybridizes the CNN and transformer as the encoders to obtain different features. To recover and fuse the feature maps from the encoders, we design the CNN decoder and the transformer decoder for TransCloudSeg. After obtaining two sets of feature maps from two different decoders, we propose the heterogeneous fusion module to effectively fuse the heterogeneous feature maps by applying the self-attention mechanism. We conduct a series of experiments on Tianjin Normal University large-scale cloud detection database and Tianjin Normal University cloud detection database, and the results show that our method achieves a better performance than other state-of-the-art methods, thus proving the effectiveness of the proposed TransCloudSeg.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2022.3194316</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9027-0690</orcidid><orcidid>https://orcid.org/0000-0001-9544-6731</orcidid><orcidid>https://orcid.org/0000-0002-8813-6118</orcidid><orcidid>https://orcid.org/0000-0002-2993-8612</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2022, Vol.15, p.6121-6132 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_proquest_journals_2700416859 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Artificial neural networks cloud image segmentation Clouds Coders Convolutional neural network (CNN) Convolutional neural networks Decoders Decoding Detection Feature maps Fuses Ground-based observation heterogeneous feature maps Image processing Image segmentation Information processing Methods Neural networks Receptive field Remote sensing transformer Transformers |
title | TransCloudSeg: Ground-Based Cloud Image Segmentation With Transformer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A43%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TransCloudSeg:%20Ground-Based%20Cloud%20Image%20Segmentation%20With%20Transformer&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Liu,%20Shuang&rft.date=2022&rft.volume=15&rft.spage=6121&rft.epage=6132&rft.pages=6121-6132&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2022.3194316&rft_dat=%3Cproquest_ieee_%3E2700416859%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700416859&rft_id=info:pmid/&rft_ieee_id=9842308&rft_doaj_id=oai_doaj_org_article_1155b824de8b4306ba116275c82ec92f&rfr_iscdi=true |