Negatively Biased Solar Cell Optical Receiver for Underwater Wireless Optical Communication System With Low Peak Average Power Ratio

Charging batteries in underwater scenarios is generally very expensive and impractical, and solar cell (SC)-based underwater simultaneous lightwave information and power transfer (SLIPT) systems are a powerful solution. However, silicon SC receiver devices have limited bandwidth and are prone to dee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics journal 2022-08, Vol.14 (4), p.1-9
Hauptverfasser: Lei, Wen, Chen, Zhe, Xu, Yongzhe, Jiang, Canjian, Lin, Jiajun, Fang, Junbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 4
container_start_page 1
container_title IEEE photonics journal
container_volume 14
creator Lei, Wen
Chen, Zhe
Xu, Yongzhe
Jiang, Canjian
Lin, Jiajun
Fang, Junbin
description Charging batteries in underwater scenarios is generally very expensive and impractical, and solar cell (SC)-based underwater simultaneous lightwave information and power transfer (SLIPT) systems are a powerful solution. However, silicon SC receiver devices have limited bandwidth and are prone to deep signal-to-noise (SNR) degradation during underwater light fading effects. For these problems, this manuscript proposes a negative-biased SC optical receiver scheme to increase the -3 dB bandwidth of silicon SC from 440 kHz to 780 kHz. For the deep fading of SNR caused by various degradation effects in the water environment, a low peak average power ratio (PAPR) discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) modulation scheme is employed to counteract the deep fading phenomenon in the system. Achieved a communication rate of 15.2 Mbps in a 60 cm underwater environment with a fading factor of 0.403 and a bit error rate (BER) of 1.59\times 10^{-3} under perturbation. Also, the performance of DFT-S-OFDM and orthogonal frequency division multiplexing (OFDM) modulation systems in water environments with different turbidity (absorption characteristics and scattering) and presence of disturbances are compared separately, and the DFT-S-OFDM system is more robust. Finally, we complete the energy harvesting during the communication process, and the experiments show that the total battery power efficiency of the energy harvesting system can be increased by 1.87 times under the white light-emitting diode (LED) continuous irradiation for three hours.
doi_str_mv 10.1109/JPHOT.2022.3186702
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2700414683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9808401</ieee_id><doaj_id>oai_doaj_org_article_0a4babaaaafa45ee9adc91050c8a1b4c</doaj_id><sourcerecordid>2700414683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-2b08b6d894b3541208f1cedbef1baad60fe4052d2814f06e0d4e628974746dde3</originalsourceid><addsrcrecordid>eNpNkc1uGjEURkdRK4WmeYFkY6lr6LXHY-wlRc1PhQpKQFlad8Z36NABU3sIYt8HrwkR6srX1vmObX1ZdsNhwDmYrz9mD9P5QIAQg5xrNQRxkfW4kXkfVFF8-G--zD7FuAJQhheml_39SUvsmldqD-xbg5Ece_YtBjamtmXTbddU2LInqigxgdU-sMXGUdhjl7YvTaCWYjyDY79e7zZp7Bq_Yc-H2NE6Ud0vNvF7NiP8zUbJg0tiM79Phqcj-Tn7WGMb6fp9vcoWd9_n44f-ZHr_OB5N-pWEouuLEnSpnDayzAvJBeiaV-RKqnmJ6BTUlDjhhOayBkXgJCmhzVAOpXKO8qvs8eR1Hld2G5o1hoP12Ni3Ax-WFkP6SEsWUJaYrIg1yoLIoKsMhwIqjbyUVXJ9Obm2wf_ZUezsyu_CJj3fiiGA5FLpPFHiRFXBxxioPt_KwR6bs2_N2WNz9r25FLo9hRoiOgeMBi2B5_8A66eW7Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700414683</pqid></control><display><type>article</type><title>Negatively Biased Solar Cell Optical Receiver for Underwater Wireless Optical Communication System With Low Peak Average Power Ratio</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lei, Wen ; Chen, Zhe ; Xu, Yongzhe ; Jiang, Canjian ; Lin, Jiajun ; Fang, Junbin</creator><creatorcontrib>Lei, Wen ; Chen, Zhe ; Xu, Yongzhe ; Jiang, Canjian ; Lin, Jiajun ; Fang, Junbin</creatorcontrib><description><![CDATA[Charging batteries in underwater scenarios is generally very expensive and impractical, and solar cell (SC)-based underwater simultaneous lightwave information and power transfer (SLIPT) systems are a powerful solution. However, silicon SC receiver devices have limited bandwidth and are prone to deep signal-to-noise (SNR) degradation during underwater light fading effects. For these problems, this manuscript proposes a negative-biased SC optical receiver scheme to increase the <inline-formula><tex-math notation="LaTeX">-3</tex-math></inline-formula> dB bandwidth of silicon SC from 440 kHz to 780 kHz. For the deep fading of SNR caused by various degradation effects in the water environment, a low peak average power ratio (PAPR) discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) modulation scheme is employed to counteract the deep fading phenomenon in the system. Achieved a communication rate of 15.2 Mbps in a 60 cm underwater environment with a fading factor of 0.403 and a bit error rate (BER) of <inline-formula><tex-math notation="LaTeX">1.59\times 10^{-3}</tex-math></inline-formula> under perturbation. Also, the performance of DFT-S-OFDM and orthogonal frequency division multiplexing (OFDM) modulation systems in water environments with different turbidity (absorption characteristics and scattering) and presence of disturbances are compared separately, and the DFT-S-OFDM system is more robust. Finally, we complete the energy harvesting during the communication process, and the experiments show that the total battery power efficiency of the energy harvesting system can be increased by 1.87 times under the white light-emitting diode (LED) continuous irradiation for three hours.]]></description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2022.3186702</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bandwidth ; Bandwidths ; Baseband ; Bit error rate ; Communication ; Communications systems ; DFT-S-OFDM ; Energy harvesting ; Fading ; Fourier transforms ; Licenses ; Light emitting diodes ; Modulation ; negative bias solar cell ; Optical communication ; Optical receivers ; Orthogonal Frequency Division Multiplexing ; Peak to average power ratio ; Perturbation ; Photodegradation ; Photovoltaic cells ; Power ; Power efficiency ; Power management ; Power transfer ; Signal to noise ratio ; Silicon ; SLIPT ; Solar cells ; Turbidity ; Underwater communication ; Underwater wireless optical communication (UWOC) ; Visible light communication ; White light ; Wireless communications</subject><ispartof>IEEE photonics journal, 2022-08, Vol.14 (4), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-2b08b6d894b3541208f1cedbef1baad60fe4052d2814f06e0d4e628974746dde3</citedby><cites>FETCH-LOGICAL-c405t-2b08b6d894b3541208f1cedbef1baad60fe4052d2814f06e0d4e628974746dde3</cites><orcidid>0000-0002-6077-8805 ; 0000-0002-0730-8732 ; 0000-0001-5473-5350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9808401$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Lei, Wen</creatorcontrib><creatorcontrib>Chen, Zhe</creatorcontrib><creatorcontrib>Xu, Yongzhe</creatorcontrib><creatorcontrib>Jiang, Canjian</creatorcontrib><creatorcontrib>Lin, Jiajun</creatorcontrib><creatorcontrib>Fang, Junbin</creatorcontrib><title>Negatively Biased Solar Cell Optical Receiver for Underwater Wireless Optical Communication System With Low Peak Average Power Ratio</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description><![CDATA[Charging batteries in underwater scenarios is generally very expensive and impractical, and solar cell (SC)-based underwater simultaneous lightwave information and power transfer (SLIPT) systems are a powerful solution. However, silicon SC receiver devices have limited bandwidth and are prone to deep signal-to-noise (SNR) degradation during underwater light fading effects. For these problems, this manuscript proposes a negative-biased SC optical receiver scheme to increase the <inline-formula><tex-math notation="LaTeX">-3</tex-math></inline-formula> dB bandwidth of silicon SC from 440 kHz to 780 kHz. For the deep fading of SNR caused by various degradation effects in the water environment, a low peak average power ratio (PAPR) discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) modulation scheme is employed to counteract the deep fading phenomenon in the system. Achieved a communication rate of 15.2 Mbps in a 60 cm underwater environment with a fading factor of 0.403 and a bit error rate (BER) of <inline-formula><tex-math notation="LaTeX">1.59\times 10^{-3}</tex-math></inline-formula> under perturbation. Also, the performance of DFT-S-OFDM and orthogonal frequency division multiplexing (OFDM) modulation systems in water environments with different turbidity (absorption characteristics and scattering) and presence of disturbances are compared separately, and the DFT-S-OFDM system is more robust. Finally, we complete the energy harvesting during the communication process, and the experiments show that the total battery power efficiency of the energy harvesting system can be increased by 1.87 times under the white light-emitting diode (LED) continuous irradiation for three hours.]]></description><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Baseband</subject><subject>Bit error rate</subject><subject>Communication</subject><subject>Communications systems</subject><subject>DFT-S-OFDM</subject><subject>Energy harvesting</subject><subject>Fading</subject><subject>Fourier transforms</subject><subject>Licenses</subject><subject>Light emitting diodes</subject><subject>Modulation</subject><subject>negative bias solar cell</subject><subject>Optical communication</subject><subject>Optical receivers</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Peak to average power ratio</subject><subject>Perturbation</subject><subject>Photodegradation</subject><subject>Photovoltaic cells</subject><subject>Power</subject><subject>Power efficiency</subject><subject>Power management</subject><subject>Power transfer</subject><subject>Signal to noise ratio</subject><subject>Silicon</subject><subject>SLIPT</subject><subject>Solar cells</subject><subject>Turbidity</subject><subject>Underwater communication</subject><subject>Underwater wireless optical communication (UWOC)</subject><subject>Visible light communication</subject><subject>White light</subject><subject>Wireless communications</subject><issn>1943-0655</issn><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1uGjEURkdRK4WmeYFkY6lr6LXHY-wlRc1PhQpKQFlad8Z36NABU3sIYt8HrwkR6srX1vmObX1ZdsNhwDmYrz9mD9P5QIAQg5xrNQRxkfW4kXkfVFF8-G--zD7FuAJQhheml_39SUvsmldqD-xbg5Ece_YtBjamtmXTbddU2LInqigxgdU-sMXGUdhjl7YvTaCWYjyDY79e7zZp7Bq_Yc-H2NE6Ud0vNvF7NiP8zUbJg0tiM79Phqcj-Tn7WGMb6fp9vcoWd9_n44f-ZHr_OB5N-pWEouuLEnSpnDayzAvJBeiaV-RKqnmJ6BTUlDjhhOayBkXgJCmhzVAOpXKO8qvs8eR1Hld2G5o1hoP12Ni3Ax-WFkP6SEsWUJaYrIg1yoLIoKsMhwIqjbyUVXJ9Obm2wf_ZUezsyu_CJj3fiiGA5FLpPFHiRFXBxxioPt_KwR6bs2_N2WNz9r25FLo9hRoiOgeMBi2B5_8A66eW7Q</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Lei, Wen</creator><creator>Chen, Zhe</creator><creator>Xu, Yongzhe</creator><creator>Jiang, Canjian</creator><creator>Lin, Jiajun</creator><creator>Fang, Junbin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6077-8805</orcidid><orcidid>https://orcid.org/0000-0002-0730-8732</orcidid><orcidid>https://orcid.org/0000-0001-5473-5350</orcidid></search><sort><creationdate>20220801</creationdate><title>Negatively Biased Solar Cell Optical Receiver for Underwater Wireless Optical Communication System With Low Peak Average Power Ratio</title><author>Lei, Wen ; Chen, Zhe ; Xu, Yongzhe ; Jiang, Canjian ; Lin, Jiajun ; Fang, Junbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-2b08b6d894b3541208f1cedbef1baad60fe4052d2814f06e0d4e628974746dde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Baseband</topic><topic>Bit error rate</topic><topic>Communication</topic><topic>Communications systems</topic><topic>DFT-S-OFDM</topic><topic>Energy harvesting</topic><topic>Fading</topic><topic>Fourier transforms</topic><topic>Licenses</topic><topic>Light emitting diodes</topic><topic>Modulation</topic><topic>negative bias solar cell</topic><topic>Optical communication</topic><topic>Optical receivers</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Peak to average power ratio</topic><topic>Perturbation</topic><topic>Photodegradation</topic><topic>Photovoltaic cells</topic><topic>Power</topic><topic>Power efficiency</topic><topic>Power management</topic><topic>Power transfer</topic><topic>Signal to noise ratio</topic><topic>Silicon</topic><topic>SLIPT</topic><topic>Solar cells</topic><topic>Turbidity</topic><topic>Underwater communication</topic><topic>Underwater wireless optical communication (UWOC)</topic><topic>Visible light communication</topic><topic>White light</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Wen</creatorcontrib><creatorcontrib>Chen, Zhe</creatorcontrib><creatorcontrib>Xu, Yongzhe</creatorcontrib><creatorcontrib>Jiang, Canjian</creatorcontrib><creatorcontrib>Lin, Jiajun</creatorcontrib><creatorcontrib>Fang, Junbin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Wen</au><au>Chen, Zhe</au><au>Xu, Yongzhe</au><au>Jiang, Canjian</au><au>Lin, Jiajun</au><au>Fang, Junbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Negatively Biased Solar Cell Optical Receiver for Underwater Wireless Optical Communication System With Low Peak Average Power Ratio</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>14</volume><issue>4</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1943-0655</issn><eissn>1943-0655</eissn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract><![CDATA[Charging batteries in underwater scenarios is generally very expensive and impractical, and solar cell (SC)-based underwater simultaneous lightwave information and power transfer (SLIPT) systems are a powerful solution. However, silicon SC receiver devices have limited bandwidth and are prone to deep signal-to-noise (SNR) degradation during underwater light fading effects. For these problems, this manuscript proposes a negative-biased SC optical receiver scheme to increase the <inline-formula><tex-math notation="LaTeX">-3</tex-math></inline-formula> dB bandwidth of silicon SC from 440 kHz to 780 kHz. For the deep fading of SNR caused by various degradation effects in the water environment, a low peak average power ratio (PAPR) discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) modulation scheme is employed to counteract the deep fading phenomenon in the system. Achieved a communication rate of 15.2 Mbps in a 60 cm underwater environment with a fading factor of 0.403 and a bit error rate (BER) of <inline-formula><tex-math notation="LaTeX">1.59\times 10^{-3}</tex-math></inline-formula> under perturbation. Also, the performance of DFT-S-OFDM and orthogonal frequency division multiplexing (OFDM) modulation systems in water environments with different turbidity (absorption characteristics and scattering) and presence of disturbances are compared separately, and the DFT-S-OFDM system is more robust. Finally, we complete the energy harvesting during the communication process, and the experiments show that the total battery power efficiency of the energy harvesting system can be increased by 1.87 times under the white light-emitting diode (LED) continuous irradiation for three hours.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOT.2022.3186702</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6077-8805</orcidid><orcidid>https://orcid.org/0000-0002-0730-8732</orcidid><orcidid>https://orcid.org/0000-0001-5473-5350</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-0655
ispartof IEEE photonics journal, 2022-08, Vol.14 (4), p.1-9
issn 1943-0655
1943-0655
1943-0647
language eng
recordid cdi_proquest_journals_2700414683
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Bandwidth
Bandwidths
Baseband
Bit error rate
Communication
Communications systems
DFT-S-OFDM
Energy harvesting
Fading
Fourier transforms
Licenses
Light emitting diodes
Modulation
negative bias solar cell
Optical communication
Optical receivers
Orthogonal Frequency Division Multiplexing
Peak to average power ratio
Perturbation
Photodegradation
Photovoltaic cells
Power
Power efficiency
Power management
Power transfer
Signal to noise ratio
Silicon
SLIPT
Solar cells
Turbidity
Underwater communication
Underwater wireless optical communication (UWOC)
Visible light communication
White light
Wireless communications
title Negatively Biased Solar Cell Optical Receiver for Underwater Wireless Optical Communication System With Low Peak Average Power Ratio
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A06%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Negatively%20Biased%20Solar%20Cell%20Optical%20Receiver%20for%20Underwater%20Wireless%20Optical%20Communication%20System%20With%20Low%20Peak%20Average%20Power%20Ratio&rft.jtitle=IEEE%20photonics%20journal&rft.au=Lei,%20Wen&rft.date=2022-08-01&rft.volume=14&rft.issue=4&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1943-0655&rft.eissn=1943-0655&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2022.3186702&rft_dat=%3Cproquest_ieee_%3E2700414683%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700414683&rft_id=info:pmid/&rft_ieee_id=9808401&rft_doaj_id=oai_doaj_org_article_0a4babaaaafa45ee9adc91050c8a1b4c&rfr_iscdi=true