Negatively Biased Solar Cell Optical Receiver for Underwater Wireless Optical Communication System With Low Peak Average Power Ratio
Charging batteries in underwater scenarios is generally very expensive and impractical, and solar cell (SC)-based underwater simultaneous lightwave information and power transfer (SLIPT) systems are a powerful solution. However, silicon SC receiver devices have limited bandwidth and are prone to dee...
Gespeichert in:
Veröffentlicht in: | IEEE photonics journal 2022-08, Vol.14 (4), p.1-9 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | IEEE photonics journal |
container_volume | 14 |
creator | Lei, Wen Chen, Zhe Xu, Yongzhe Jiang, Canjian Lin, Jiajun Fang, Junbin |
description | Charging batteries in underwater scenarios is generally very expensive and impractical, and solar cell (SC)-based underwater simultaneous lightwave information and power transfer (SLIPT) systems are a powerful solution. However, silicon SC receiver devices have limited bandwidth and are prone to deep signal-to-noise (SNR) degradation during underwater light fading effects. For these problems, this manuscript proposes a negative-biased SC optical receiver scheme to increase the -3 dB bandwidth of silicon SC from 440 kHz to 780 kHz. For the deep fading of SNR caused by various degradation effects in the water environment, a low peak average power ratio (PAPR) discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) modulation scheme is employed to counteract the deep fading phenomenon in the system. Achieved a communication rate of 15.2 Mbps in a 60 cm underwater environment with a fading factor of 0.403 and a bit error rate (BER) of 1.59\times 10^{-3} under perturbation. Also, the performance of DFT-S-OFDM and orthogonal frequency division multiplexing (OFDM) modulation systems in water environments with different turbidity (absorption characteristics and scattering) and presence of disturbances are compared separately, and the DFT-S-OFDM system is more robust. Finally, we complete the energy harvesting during the communication process, and the experiments show that the total battery power efficiency of the energy harvesting system can be increased by 1.87 times under the white light-emitting diode (LED) continuous irradiation for three hours. |
doi_str_mv | 10.1109/JPHOT.2022.3186702 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2700414683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9808401</ieee_id><doaj_id>oai_doaj_org_article_0a4babaaaafa45ee9adc91050c8a1b4c</doaj_id><sourcerecordid>2700414683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-2b08b6d894b3541208f1cedbef1baad60fe4052d2814f06e0d4e628974746dde3</originalsourceid><addsrcrecordid>eNpNkc1uGjEURkdRK4WmeYFkY6lr6LXHY-wlRc1PhQpKQFlad8Z36NABU3sIYt8HrwkR6srX1vmObX1ZdsNhwDmYrz9mD9P5QIAQg5xrNQRxkfW4kXkfVFF8-G--zD7FuAJQhheml_39SUvsmldqD-xbg5Ece_YtBjamtmXTbddU2LInqigxgdU-sMXGUdhjl7YvTaCWYjyDY79e7zZp7Bq_Yc-H2NE6Ud0vNvF7NiP8zUbJg0tiM79Phqcj-Tn7WGMb6fp9vcoWd9_n44f-ZHr_OB5N-pWEouuLEnSpnDayzAvJBeiaV-RKqnmJ6BTUlDjhhOayBkXgJCmhzVAOpXKO8qvs8eR1Hld2G5o1hoP12Ni3Ax-WFkP6SEsWUJaYrIg1yoLIoKsMhwIqjbyUVXJ9Obm2wf_ZUezsyu_CJj3fiiGA5FLpPFHiRFXBxxioPt_KwR6bs2_N2WNz9r25FLo9hRoiOgeMBi2B5_8A66eW7Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700414683</pqid></control><display><type>article</type><title>Negatively Biased Solar Cell Optical Receiver for Underwater Wireless Optical Communication System With Low Peak Average Power Ratio</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lei, Wen ; Chen, Zhe ; Xu, Yongzhe ; Jiang, Canjian ; Lin, Jiajun ; Fang, Junbin</creator><creatorcontrib>Lei, Wen ; Chen, Zhe ; Xu, Yongzhe ; Jiang, Canjian ; Lin, Jiajun ; Fang, Junbin</creatorcontrib><description><![CDATA[Charging batteries in underwater scenarios is generally very expensive and impractical, and solar cell (SC)-based underwater simultaneous lightwave information and power transfer (SLIPT) systems are a powerful solution. However, silicon SC receiver devices have limited bandwidth and are prone to deep signal-to-noise (SNR) degradation during underwater light fading effects. For these problems, this manuscript proposes a negative-biased SC optical receiver scheme to increase the <inline-formula><tex-math notation="LaTeX">-3</tex-math></inline-formula> dB bandwidth of silicon SC from 440 kHz to 780 kHz. For the deep fading of SNR caused by various degradation effects in the water environment, a low peak average power ratio (PAPR) discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) modulation scheme is employed to counteract the deep fading phenomenon in the system. Achieved a communication rate of 15.2 Mbps in a 60 cm underwater environment with a fading factor of 0.403 and a bit error rate (BER) of <inline-formula><tex-math notation="LaTeX">1.59\times 10^{-3}</tex-math></inline-formula> under perturbation. Also, the performance of DFT-S-OFDM and orthogonal frequency division multiplexing (OFDM) modulation systems in water environments with different turbidity (absorption characteristics and scattering) and presence of disturbances are compared separately, and the DFT-S-OFDM system is more robust. Finally, we complete the energy harvesting during the communication process, and the experiments show that the total battery power efficiency of the energy harvesting system can be increased by 1.87 times under the white light-emitting diode (LED) continuous irradiation for three hours.]]></description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2022.3186702</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bandwidth ; Bandwidths ; Baseband ; Bit error rate ; Communication ; Communications systems ; DFT-S-OFDM ; Energy harvesting ; Fading ; Fourier transforms ; Licenses ; Light emitting diodes ; Modulation ; negative bias solar cell ; Optical communication ; Optical receivers ; Orthogonal Frequency Division Multiplexing ; Peak to average power ratio ; Perturbation ; Photodegradation ; Photovoltaic cells ; Power ; Power efficiency ; Power management ; Power transfer ; Signal to noise ratio ; Silicon ; SLIPT ; Solar cells ; Turbidity ; Underwater communication ; Underwater wireless optical communication (UWOC) ; Visible light communication ; White light ; Wireless communications</subject><ispartof>IEEE photonics journal, 2022-08, Vol.14 (4), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-2b08b6d894b3541208f1cedbef1baad60fe4052d2814f06e0d4e628974746dde3</citedby><cites>FETCH-LOGICAL-c405t-2b08b6d894b3541208f1cedbef1baad60fe4052d2814f06e0d4e628974746dde3</cites><orcidid>0000-0002-6077-8805 ; 0000-0002-0730-8732 ; 0000-0001-5473-5350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9808401$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Lei, Wen</creatorcontrib><creatorcontrib>Chen, Zhe</creatorcontrib><creatorcontrib>Xu, Yongzhe</creatorcontrib><creatorcontrib>Jiang, Canjian</creatorcontrib><creatorcontrib>Lin, Jiajun</creatorcontrib><creatorcontrib>Fang, Junbin</creatorcontrib><title>Negatively Biased Solar Cell Optical Receiver for Underwater Wireless Optical Communication System With Low Peak Average Power Ratio</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description><![CDATA[Charging batteries in underwater scenarios is generally very expensive and impractical, and solar cell (SC)-based underwater simultaneous lightwave information and power transfer (SLIPT) systems are a powerful solution. However, silicon SC receiver devices have limited bandwidth and are prone to deep signal-to-noise (SNR) degradation during underwater light fading effects. For these problems, this manuscript proposes a negative-biased SC optical receiver scheme to increase the <inline-formula><tex-math notation="LaTeX">-3</tex-math></inline-formula> dB bandwidth of silicon SC from 440 kHz to 780 kHz. For the deep fading of SNR caused by various degradation effects in the water environment, a low peak average power ratio (PAPR) discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) modulation scheme is employed to counteract the deep fading phenomenon in the system. Achieved a communication rate of 15.2 Mbps in a 60 cm underwater environment with a fading factor of 0.403 and a bit error rate (BER) of <inline-formula><tex-math notation="LaTeX">1.59\times 10^{-3}</tex-math></inline-formula> under perturbation. Also, the performance of DFT-S-OFDM and orthogonal frequency division multiplexing (OFDM) modulation systems in water environments with different turbidity (absorption characteristics and scattering) and presence of disturbances are compared separately, and the DFT-S-OFDM system is more robust. Finally, we complete the energy harvesting during the communication process, and the experiments show that the total battery power efficiency of the energy harvesting system can be increased by 1.87 times under the white light-emitting diode (LED) continuous irradiation for three hours.]]></description><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Baseband</subject><subject>Bit error rate</subject><subject>Communication</subject><subject>Communications systems</subject><subject>DFT-S-OFDM</subject><subject>Energy harvesting</subject><subject>Fading</subject><subject>Fourier transforms</subject><subject>Licenses</subject><subject>Light emitting diodes</subject><subject>Modulation</subject><subject>negative bias solar cell</subject><subject>Optical communication</subject><subject>Optical receivers</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Peak to average power ratio</subject><subject>Perturbation</subject><subject>Photodegradation</subject><subject>Photovoltaic cells</subject><subject>Power</subject><subject>Power efficiency</subject><subject>Power management</subject><subject>Power transfer</subject><subject>Signal to noise ratio</subject><subject>Silicon</subject><subject>SLIPT</subject><subject>Solar cells</subject><subject>Turbidity</subject><subject>Underwater communication</subject><subject>Underwater wireless optical communication (UWOC)</subject><subject>Visible light communication</subject><subject>White light</subject><subject>Wireless communications</subject><issn>1943-0655</issn><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1uGjEURkdRK4WmeYFkY6lr6LXHY-wlRc1PhQpKQFlad8Z36NABU3sIYt8HrwkR6srX1vmObX1ZdsNhwDmYrz9mD9P5QIAQg5xrNQRxkfW4kXkfVFF8-G--zD7FuAJQhheml_39SUvsmldqD-xbg5Ece_YtBjamtmXTbddU2LInqigxgdU-sMXGUdhjl7YvTaCWYjyDY79e7zZp7Bq_Yc-H2NE6Ud0vNvF7NiP8zUbJg0tiM79Phqcj-Tn7WGMb6fp9vcoWd9_n44f-ZHr_OB5N-pWEouuLEnSpnDayzAvJBeiaV-RKqnmJ6BTUlDjhhOayBkXgJCmhzVAOpXKO8qvs8eR1Hld2G5o1hoP12Ni3Ax-WFkP6SEsWUJaYrIg1yoLIoKsMhwIqjbyUVXJ9Obm2wf_ZUezsyu_CJj3fiiGA5FLpPFHiRFXBxxioPt_KwR6bs2_N2WNz9r25FLo9hRoiOgeMBi2B5_8A66eW7Q</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Lei, Wen</creator><creator>Chen, Zhe</creator><creator>Xu, Yongzhe</creator><creator>Jiang, Canjian</creator><creator>Lin, Jiajun</creator><creator>Fang, Junbin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6077-8805</orcidid><orcidid>https://orcid.org/0000-0002-0730-8732</orcidid><orcidid>https://orcid.org/0000-0001-5473-5350</orcidid></search><sort><creationdate>20220801</creationdate><title>Negatively Biased Solar Cell Optical Receiver for Underwater Wireless Optical Communication System With Low Peak Average Power Ratio</title><author>Lei, Wen ; Chen, Zhe ; Xu, Yongzhe ; Jiang, Canjian ; Lin, Jiajun ; Fang, Junbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-2b08b6d894b3541208f1cedbef1baad60fe4052d2814f06e0d4e628974746dde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Baseband</topic><topic>Bit error rate</topic><topic>Communication</topic><topic>Communications systems</topic><topic>DFT-S-OFDM</topic><topic>Energy harvesting</topic><topic>Fading</topic><topic>Fourier transforms</topic><topic>Licenses</topic><topic>Light emitting diodes</topic><topic>Modulation</topic><topic>negative bias solar cell</topic><topic>Optical communication</topic><topic>Optical receivers</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Peak to average power ratio</topic><topic>Perturbation</topic><topic>Photodegradation</topic><topic>Photovoltaic cells</topic><topic>Power</topic><topic>Power efficiency</topic><topic>Power management</topic><topic>Power transfer</topic><topic>Signal to noise ratio</topic><topic>Silicon</topic><topic>SLIPT</topic><topic>Solar cells</topic><topic>Turbidity</topic><topic>Underwater communication</topic><topic>Underwater wireless optical communication (UWOC)</topic><topic>Visible light communication</topic><topic>White light</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Wen</creatorcontrib><creatorcontrib>Chen, Zhe</creatorcontrib><creatorcontrib>Xu, Yongzhe</creatorcontrib><creatorcontrib>Jiang, Canjian</creatorcontrib><creatorcontrib>Lin, Jiajun</creatorcontrib><creatorcontrib>Fang, Junbin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Wen</au><au>Chen, Zhe</au><au>Xu, Yongzhe</au><au>Jiang, Canjian</au><au>Lin, Jiajun</au><au>Fang, Junbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Negatively Biased Solar Cell Optical Receiver for Underwater Wireless Optical Communication System With Low Peak Average Power Ratio</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>14</volume><issue>4</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1943-0655</issn><eissn>1943-0655</eissn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract><![CDATA[Charging batteries in underwater scenarios is generally very expensive and impractical, and solar cell (SC)-based underwater simultaneous lightwave information and power transfer (SLIPT) systems are a powerful solution. However, silicon SC receiver devices have limited bandwidth and are prone to deep signal-to-noise (SNR) degradation during underwater light fading effects. For these problems, this manuscript proposes a negative-biased SC optical receiver scheme to increase the <inline-formula><tex-math notation="LaTeX">-3</tex-math></inline-formula> dB bandwidth of silicon SC from 440 kHz to 780 kHz. For the deep fading of SNR caused by various degradation effects in the water environment, a low peak average power ratio (PAPR) discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) modulation scheme is employed to counteract the deep fading phenomenon in the system. Achieved a communication rate of 15.2 Mbps in a 60 cm underwater environment with a fading factor of 0.403 and a bit error rate (BER) of <inline-formula><tex-math notation="LaTeX">1.59\times 10^{-3}</tex-math></inline-formula> under perturbation. Also, the performance of DFT-S-OFDM and orthogonal frequency division multiplexing (OFDM) modulation systems in water environments with different turbidity (absorption characteristics and scattering) and presence of disturbances are compared separately, and the DFT-S-OFDM system is more robust. Finally, we complete the energy harvesting during the communication process, and the experiments show that the total battery power efficiency of the energy harvesting system can be increased by 1.87 times under the white light-emitting diode (LED) continuous irradiation for three hours.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOT.2022.3186702</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6077-8805</orcidid><orcidid>https://orcid.org/0000-0002-0730-8732</orcidid><orcidid>https://orcid.org/0000-0001-5473-5350</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-0655 |
ispartof | IEEE photonics journal, 2022-08, Vol.14 (4), p.1-9 |
issn | 1943-0655 1943-0655 1943-0647 |
language | eng |
recordid | cdi_proquest_journals_2700414683 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Bandwidth Bandwidths Baseband Bit error rate Communication Communications systems DFT-S-OFDM Energy harvesting Fading Fourier transforms Licenses Light emitting diodes Modulation negative bias solar cell Optical communication Optical receivers Orthogonal Frequency Division Multiplexing Peak to average power ratio Perturbation Photodegradation Photovoltaic cells Power Power efficiency Power management Power transfer Signal to noise ratio Silicon SLIPT Solar cells Turbidity Underwater communication Underwater wireless optical communication (UWOC) Visible light communication White light Wireless communications |
title | Negatively Biased Solar Cell Optical Receiver for Underwater Wireless Optical Communication System With Low Peak Average Power Ratio |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A06%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Negatively%20Biased%20Solar%20Cell%20Optical%20Receiver%20for%20Underwater%20Wireless%20Optical%20Communication%20System%20With%20Low%20Peak%20Average%20Power%20Ratio&rft.jtitle=IEEE%20photonics%20journal&rft.au=Lei,%20Wen&rft.date=2022-08-01&rft.volume=14&rft.issue=4&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1943-0655&rft.eissn=1943-0655&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2022.3186702&rft_dat=%3Cproquest_ieee_%3E2700414683%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700414683&rft_id=info:pmid/&rft_ieee_id=9808401&rft_doaj_id=oai_doaj_org_article_0a4babaaaafa45ee9adc91050c8a1b4c&rfr_iscdi=true |