Rational design of the FeS2/NiS2 heterojunction interface structure to enhance the oxygen electrocatalytic performance for zinc–air batteries
Fine design of nanostructures of bifunctional electrocatalysts and developing low-cost, efficient and durable electrocatalytic materials are important directions for the development of sustainable energy storage and conversion devices such as electrolytic water and metal–air batteries. In this work,...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-08, Vol.10 (31), p.16627-16638 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16638 |
---|---|
container_issue | 31 |
container_start_page | 16627 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 10 |
creator | Wu, Lei Li, Jixiao Shi, Chuan Li, Yongliang Mi, Hongwei Deng, Libo Zhang, Qianling He, Chuanxin Ren, Xiangzhong |
description | Fine design of nanostructures of bifunctional electrocatalysts and developing low-cost, efficient and durable electrocatalytic materials are important directions for the development of sustainable energy storage and conversion devices such as electrolytic water and metal–air batteries. In this work, nickel–iron layered sulfide hollow double-shell nanorods were synthesized by a one-step hydrothermal self-templating process followed by a high-temperature sulfurization process. Benefiting from the large electrochemically active surface area of the layered nanosheets, the electronic regulation of the FeS2/NiS2 heterogeneous interface, and the mechanical support of the hollow core–shell structured nanorods, the synthesized FeS2/NiS2 hollow multi-shell nanorods with an open layered array structure (FeS2/NiS2 HDSNRs) show better electrocatalytic performance than the single component FeS2 and NiS2 electrocatalysts in alkaline electrolyte solution. In 1.0 M KOH solution for the oxygen reduction reaction, the FeS2/NiS2 HDSNRs electrocatalyst has a half-wave potential of 0.80 V vs. RHE and an overpotential of only 280 mV at a current density of 50 mA cm−2 for oxygen evolution reaction and the Tafel slope is only 33 mV dec−1. The FeS2/NiS2 HDSNRs electrocatalyst used as the cathode of a liquid zinc–air battery showed a peak power density of 130 mW cm−2 and a charge–discharge cycle life of 480 h at a current density of 5 mA cm−2, with a voltage gap of only 0.92 V. In addition, the assembled solid-state zinc–air battery also exhibits a charge–discharge cycle life of 11 h at a current density of 5 mA cm−2, and two solid-state batteries connected in series can also drive LED lights. This study provides new insights for the rational design of nickel–iron sulfides with a layered nanosheet-core–shell structure for electrocatalysis and renewable energy applications. |
doi_str_mv | 10.1039/d2ta03554e |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2700383286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700383286</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-87831f3c644988b9710a1db94f38cb6421ca9c45f1f119b44156310fb9c8072d3</originalsourceid><addsrcrecordid>eNo9UMtKAzEUDaJg0W78goDrsXnNTLKUYlUoClbXJZO5aVPGpCYZsK78Axf-oV_iVMW7OQ_OOYuL0BklF5RwNWlZ1oSXpYADNGKkJEUtVHX4z6U8RuOUNmQ4SUil1Ah9POjsgtcdbiG5lcfB4rwGPIMFm9y5BcNryBDDpvdmH8TOD9JqAzjl2JvcR8A5YPBr7Qdz3w2vuxV4DB2YHIPRWXe77AzeDsUQn39yA8Fvzpuv90_tIm50HmYdpFN0ZHWXYPyHJ-hpdvU4vSnm99e308t5saWS50LWklPLTSWEkrJRNSWato0SlkvTVIJRo5URpaWWUtUIQcuKU2IbZSSpWctP0Pnv7jaGlx5SXm5CH4c_pCWrCeGSM1nxb5qlaVk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700383286</pqid></control><display><type>article</type><title>Rational design of the FeS2/NiS2 heterojunction interface structure to enhance the oxygen electrocatalytic performance for zinc–air batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wu, Lei ; Li, Jixiao ; Shi, Chuan ; Li, Yongliang ; Mi, Hongwei ; Deng, Libo ; Zhang, Qianling ; He, Chuanxin ; Ren, Xiangzhong</creator><creatorcontrib>Wu, Lei ; Li, Jixiao ; Shi, Chuan ; Li, Yongliang ; Mi, Hongwei ; Deng, Libo ; Zhang, Qianling ; He, Chuanxin ; Ren, Xiangzhong</creatorcontrib><description>Fine design of nanostructures of bifunctional electrocatalysts and developing low-cost, efficient and durable electrocatalytic materials are important directions for the development of sustainable energy storage and conversion devices such as electrolytic water and metal–air batteries. In this work, nickel–iron layered sulfide hollow double-shell nanorods were synthesized by a one-step hydrothermal self-templating process followed by a high-temperature sulfurization process. Benefiting from the large electrochemically active surface area of the layered nanosheets, the electronic regulation of the FeS2/NiS2 heterogeneous interface, and the mechanical support of the hollow core–shell structured nanorods, the synthesized FeS2/NiS2 hollow multi-shell nanorods with an open layered array structure (FeS2/NiS2 HDSNRs) show better electrocatalytic performance than the single component FeS2 and NiS2 electrocatalysts in alkaline electrolyte solution. In 1.0 M KOH solution for the oxygen reduction reaction, the FeS2/NiS2 HDSNRs electrocatalyst has a half-wave potential of 0.80 V vs. RHE and an overpotential of only 280 mV at a current density of 50 mA cm−2 for oxygen evolution reaction and the Tafel slope is only 33 mV dec−1. The FeS2/NiS2 HDSNRs electrocatalyst used as the cathode of a liquid zinc–air battery showed a peak power density of 130 mW cm−2 and a charge–discharge cycle life of 480 h at a current density of 5 mA cm−2, with a voltage gap of only 0.92 V. In addition, the assembled solid-state zinc–air battery also exhibits a charge–discharge cycle life of 11 h at a current density of 5 mA cm−2, and two solid-state batteries connected in series can also drive LED lights. This study provides new insights for the rational design of nickel–iron sulfides with a layered nanosheet-core–shell structure for electrocatalysis and renewable energy applications.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta03554e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemical reduction ; Core-shell structure ; Current density ; Design ; Discharge ; Electrocatalysts ; Energy storage ; Heterojunctions ; High temperature ; Iron ; Iron sulfides ; Metal air batteries ; Nanorods ; Nanostructure ; Nickel ; Oxygen ; Oxygen evolution reactions ; Oxygen reduction reactions ; Pyrite ; Renewable energy ; Solid state ; Storage batteries ; Sulfurization ; Sustainability ; Sustainable development ; Synthesis ; Zinc ; Zinc-oxygen batteries</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022-08, Vol.10 (31), p.16627-16638</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wu, Lei</creatorcontrib><creatorcontrib>Li, Jixiao</creatorcontrib><creatorcontrib>Shi, Chuan</creatorcontrib><creatorcontrib>Li, Yongliang</creatorcontrib><creatorcontrib>Mi, Hongwei</creatorcontrib><creatorcontrib>Deng, Libo</creatorcontrib><creatorcontrib>Zhang, Qianling</creatorcontrib><creatorcontrib>He, Chuanxin</creatorcontrib><creatorcontrib>Ren, Xiangzhong</creatorcontrib><title>Rational design of the FeS2/NiS2 heterojunction interface structure to enhance the oxygen electrocatalytic performance for zinc–air batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Fine design of nanostructures of bifunctional electrocatalysts and developing low-cost, efficient and durable electrocatalytic materials are important directions for the development of sustainable energy storage and conversion devices such as electrolytic water and metal–air batteries. In this work, nickel–iron layered sulfide hollow double-shell nanorods were synthesized by a one-step hydrothermal self-templating process followed by a high-temperature sulfurization process. Benefiting from the large electrochemically active surface area of the layered nanosheets, the electronic regulation of the FeS2/NiS2 heterogeneous interface, and the mechanical support of the hollow core–shell structured nanorods, the synthesized FeS2/NiS2 hollow multi-shell nanorods with an open layered array structure (FeS2/NiS2 HDSNRs) show better electrocatalytic performance than the single component FeS2 and NiS2 electrocatalysts in alkaline electrolyte solution. In 1.0 M KOH solution for the oxygen reduction reaction, the FeS2/NiS2 HDSNRs electrocatalyst has a half-wave potential of 0.80 V vs. RHE and an overpotential of only 280 mV at a current density of 50 mA cm−2 for oxygen evolution reaction and the Tafel slope is only 33 mV dec−1. The FeS2/NiS2 HDSNRs electrocatalyst used as the cathode of a liquid zinc–air battery showed a peak power density of 130 mW cm−2 and a charge–discharge cycle life of 480 h at a current density of 5 mA cm−2, with a voltage gap of only 0.92 V. In addition, the assembled solid-state zinc–air battery also exhibits a charge–discharge cycle life of 11 h at a current density of 5 mA cm−2, and two solid-state batteries connected in series can also drive LED lights. This study provides new insights for the rational design of nickel–iron sulfides with a layered nanosheet-core–shell structure for electrocatalysis and renewable energy applications.</description><subject>Chemical reduction</subject><subject>Core-shell structure</subject><subject>Current density</subject><subject>Design</subject><subject>Discharge</subject><subject>Electrocatalysts</subject><subject>Energy storage</subject><subject>Heterojunctions</subject><subject>High temperature</subject><subject>Iron</subject><subject>Iron sulfides</subject><subject>Metal air batteries</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Nickel</subject><subject>Oxygen</subject><subject>Oxygen evolution reactions</subject><subject>Oxygen reduction reactions</subject><subject>Pyrite</subject><subject>Renewable energy</subject><subject>Solid state</subject><subject>Storage batteries</subject><subject>Sulfurization</subject><subject>Sustainability</subject><subject>Sustainable development</subject><subject>Synthesis</subject><subject>Zinc</subject><subject>Zinc-oxygen batteries</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9UMtKAzEUDaJg0W78goDrsXnNTLKUYlUoClbXJZO5aVPGpCYZsK78Axf-oV_iVMW7OQ_OOYuL0BklF5RwNWlZ1oSXpYADNGKkJEUtVHX4z6U8RuOUNmQ4SUil1Ah9POjsgtcdbiG5lcfB4rwGPIMFm9y5BcNryBDDpvdmH8TOD9JqAzjl2JvcR8A5YPBr7Qdz3w2vuxV4DB2YHIPRWXe77AzeDsUQn39yA8Fvzpuv90_tIm50HmYdpFN0ZHWXYPyHJ-hpdvU4vSnm99e308t5saWS50LWklPLTSWEkrJRNSWato0SlkvTVIJRo5URpaWWUtUIQcuKU2IbZSSpWctP0Pnv7jaGlx5SXm5CH4c_pCWrCeGSM1nxb5qlaVk</recordid><startdate>20220810</startdate><enddate>20220810</enddate><creator>Wu, Lei</creator><creator>Li, Jixiao</creator><creator>Shi, Chuan</creator><creator>Li, Yongliang</creator><creator>Mi, Hongwei</creator><creator>Deng, Libo</creator><creator>Zhang, Qianling</creator><creator>He, Chuanxin</creator><creator>Ren, Xiangzhong</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20220810</creationdate><title>Rational design of the FeS2/NiS2 heterojunction interface structure to enhance the oxygen electrocatalytic performance for zinc–air batteries</title><author>Wu, Lei ; Li, Jixiao ; Shi, Chuan ; Li, Yongliang ; Mi, Hongwei ; Deng, Libo ; Zhang, Qianling ; He, Chuanxin ; Ren, Xiangzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-87831f3c644988b9710a1db94f38cb6421ca9c45f1f119b44156310fb9c8072d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemical reduction</topic><topic>Core-shell structure</topic><topic>Current density</topic><topic>Design</topic><topic>Discharge</topic><topic>Electrocatalysts</topic><topic>Energy storage</topic><topic>Heterojunctions</topic><topic>High temperature</topic><topic>Iron</topic><topic>Iron sulfides</topic><topic>Metal air batteries</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Nickel</topic><topic>Oxygen</topic><topic>Oxygen evolution reactions</topic><topic>Oxygen reduction reactions</topic><topic>Pyrite</topic><topic>Renewable energy</topic><topic>Solid state</topic><topic>Storage batteries</topic><topic>Sulfurization</topic><topic>Sustainability</topic><topic>Sustainable development</topic><topic>Synthesis</topic><topic>Zinc</topic><topic>Zinc-oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Lei</creatorcontrib><creatorcontrib>Li, Jixiao</creatorcontrib><creatorcontrib>Shi, Chuan</creatorcontrib><creatorcontrib>Li, Yongliang</creatorcontrib><creatorcontrib>Mi, Hongwei</creatorcontrib><creatorcontrib>Deng, Libo</creatorcontrib><creatorcontrib>Zhang, Qianling</creatorcontrib><creatorcontrib>He, Chuanxin</creatorcontrib><creatorcontrib>Ren, Xiangzhong</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Lei</au><au>Li, Jixiao</au><au>Shi, Chuan</au><au>Li, Yongliang</au><au>Mi, Hongwei</au><au>Deng, Libo</au><au>Zhang, Qianling</au><au>He, Chuanxin</au><au>Ren, Xiangzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational design of the FeS2/NiS2 heterojunction interface structure to enhance the oxygen electrocatalytic performance for zinc–air batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022-08-10</date><risdate>2022</risdate><volume>10</volume><issue>31</issue><spage>16627</spage><epage>16638</epage><pages>16627-16638</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Fine design of nanostructures of bifunctional electrocatalysts and developing low-cost, efficient and durable electrocatalytic materials are important directions for the development of sustainable energy storage and conversion devices such as electrolytic water and metal–air batteries. In this work, nickel–iron layered sulfide hollow double-shell nanorods were synthesized by a one-step hydrothermal self-templating process followed by a high-temperature sulfurization process. Benefiting from the large electrochemically active surface area of the layered nanosheets, the electronic regulation of the FeS2/NiS2 heterogeneous interface, and the mechanical support of the hollow core–shell structured nanorods, the synthesized FeS2/NiS2 hollow multi-shell nanorods with an open layered array structure (FeS2/NiS2 HDSNRs) show better electrocatalytic performance than the single component FeS2 and NiS2 electrocatalysts in alkaline electrolyte solution. In 1.0 M KOH solution for the oxygen reduction reaction, the FeS2/NiS2 HDSNRs electrocatalyst has a half-wave potential of 0.80 V vs. RHE and an overpotential of only 280 mV at a current density of 50 mA cm−2 for oxygen evolution reaction and the Tafel slope is only 33 mV dec−1. The FeS2/NiS2 HDSNRs electrocatalyst used as the cathode of a liquid zinc–air battery showed a peak power density of 130 mW cm−2 and a charge–discharge cycle life of 480 h at a current density of 5 mA cm−2, with a voltage gap of only 0.92 V. In addition, the assembled solid-state zinc–air battery also exhibits a charge–discharge cycle life of 11 h at a current density of 5 mA cm−2, and two solid-state batteries connected in series can also drive LED lights. This study provides new insights for the rational design of nickel–iron sulfides with a layered nanosheet-core–shell structure for electrocatalysis and renewable energy applications.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ta03554e</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2022-08, Vol.10 (31), p.16627-16638 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2700383286 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Chemical reduction Core-shell structure Current density Design Discharge Electrocatalysts Energy storage Heterojunctions High temperature Iron Iron sulfides Metal air batteries Nanorods Nanostructure Nickel Oxygen Oxygen evolution reactions Oxygen reduction reactions Pyrite Renewable energy Solid state Storage batteries Sulfurization Sustainability Sustainable development Synthesis Zinc Zinc-oxygen batteries |
title | Rational design of the FeS2/NiS2 heterojunction interface structure to enhance the oxygen electrocatalytic performance for zinc–air batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A38%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20design%20of%20the%20FeS2/NiS2%20heterojunction%20interface%20structure%20to%20enhance%20the%20oxygen%20electrocatalytic%20performance%20for%20zinc%E2%80%93air%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wu,%20Lei&rft.date=2022-08-10&rft.volume=10&rft.issue=31&rft.spage=16627&rft.epage=16638&rft.pages=16627-16638&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta03554e&rft_dat=%3Cproquest%3E2700383286%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700383286&rft_id=info:pmid/&rfr_iscdi=true |