Rational design of the FeS2/NiS2 heterojunction interface structure to enhance the oxygen electrocatalytic performance for zinc–air batteries

Fine design of nanostructures of bifunctional electrocatalysts and developing low-cost, efficient and durable electrocatalytic materials are important directions for the development of sustainable energy storage and conversion devices such as electrolytic water and metal–air batteries. In this work,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-08, Vol.10 (31), p.16627-16638
Hauptverfasser: Wu, Lei, Li, Jixiao, Shi, Chuan, Li, Yongliang, Mi, Hongwei, Deng, Libo, Zhang, Qianling, He, Chuanxin, Ren, Xiangzhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16638
container_issue 31
container_start_page 16627
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 10
creator Wu, Lei
Li, Jixiao
Shi, Chuan
Li, Yongliang
Mi, Hongwei
Deng, Libo
Zhang, Qianling
He, Chuanxin
Ren, Xiangzhong
description Fine design of nanostructures of bifunctional electrocatalysts and developing low-cost, efficient and durable electrocatalytic materials are important directions for the development of sustainable energy storage and conversion devices such as electrolytic water and metal–air batteries. In this work, nickel–iron layered sulfide hollow double-shell nanorods were synthesized by a one-step hydrothermal self-templating process followed by a high-temperature sulfurization process. Benefiting from the large electrochemically active surface area of the layered nanosheets, the electronic regulation of the FeS2/NiS2 heterogeneous interface, and the mechanical support of the hollow core–shell structured nanorods, the synthesized FeS2/NiS2 hollow multi-shell nanorods with an open layered array structure (FeS2/NiS2 HDSNRs) show better electrocatalytic performance than the single component FeS2 and NiS2 electrocatalysts in alkaline electrolyte solution. In 1.0 M KOH solution for the oxygen reduction reaction, the FeS2/NiS2 HDSNRs electrocatalyst has a half-wave potential of 0.80 V vs. RHE and an overpotential of only 280 mV at a current density of 50 mA cm−2 for oxygen evolution reaction and the Tafel slope is only 33 mV dec−1. The FeS2/NiS2 HDSNRs electrocatalyst used as the cathode of a liquid zinc–air battery showed a peak power density of 130 mW cm−2 and a charge–discharge cycle life of 480 h at a current density of 5 mA cm−2, with a voltage gap of only 0.92 V. In addition, the assembled solid-state zinc–air battery also exhibits a charge–discharge cycle life of 11 h at a current density of 5 mA cm−2, and two solid-state batteries connected in series can also drive LED lights. This study provides new insights for the rational design of nickel–iron sulfides with a layered nanosheet-core–shell structure for electrocatalysis and renewable energy applications.
doi_str_mv 10.1039/d2ta03554e
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2700383286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700383286</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-87831f3c644988b9710a1db94f38cb6421ca9c45f1f119b44156310fb9c8072d3</originalsourceid><addsrcrecordid>eNo9UMtKAzEUDaJg0W78goDrsXnNTLKUYlUoClbXJZO5aVPGpCYZsK78Axf-oV_iVMW7OQ_OOYuL0BklF5RwNWlZ1oSXpYADNGKkJEUtVHX4z6U8RuOUNmQ4SUil1Ah9POjsgtcdbiG5lcfB4rwGPIMFm9y5BcNryBDDpvdmH8TOD9JqAzjl2JvcR8A5YPBr7Qdz3w2vuxV4DB2YHIPRWXe77AzeDsUQn39yA8Fvzpuv90_tIm50HmYdpFN0ZHWXYPyHJ-hpdvU4vSnm99e308t5saWS50LWklPLTSWEkrJRNSWato0SlkvTVIJRo5URpaWWUtUIQcuKU2IbZSSpWctP0Pnv7jaGlx5SXm5CH4c_pCWrCeGSM1nxb5qlaVk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700383286</pqid></control><display><type>article</type><title>Rational design of the FeS2/NiS2 heterojunction interface structure to enhance the oxygen electrocatalytic performance for zinc–air batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wu, Lei ; Li, Jixiao ; Shi, Chuan ; Li, Yongliang ; Mi, Hongwei ; Deng, Libo ; Zhang, Qianling ; He, Chuanxin ; Ren, Xiangzhong</creator><creatorcontrib>Wu, Lei ; Li, Jixiao ; Shi, Chuan ; Li, Yongliang ; Mi, Hongwei ; Deng, Libo ; Zhang, Qianling ; He, Chuanxin ; Ren, Xiangzhong</creatorcontrib><description>Fine design of nanostructures of bifunctional electrocatalysts and developing low-cost, efficient and durable electrocatalytic materials are important directions for the development of sustainable energy storage and conversion devices such as electrolytic water and metal–air batteries. In this work, nickel–iron layered sulfide hollow double-shell nanorods were synthesized by a one-step hydrothermal self-templating process followed by a high-temperature sulfurization process. Benefiting from the large electrochemically active surface area of the layered nanosheets, the electronic regulation of the FeS2/NiS2 heterogeneous interface, and the mechanical support of the hollow core–shell structured nanorods, the synthesized FeS2/NiS2 hollow multi-shell nanorods with an open layered array structure (FeS2/NiS2 HDSNRs) show better electrocatalytic performance than the single component FeS2 and NiS2 electrocatalysts in alkaline electrolyte solution. In 1.0 M KOH solution for the oxygen reduction reaction, the FeS2/NiS2 HDSNRs electrocatalyst has a half-wave potential of 0.80 V vs. RHE and an overpotential of only 280 mV at a current density of 50 mA cm−2 for oxygen evolution reaction and the Tafel slope is only 33 mV dec−1. The FeS2/NiS2 HDSNRs electrocatalyst used as the cathode of a liquid zinc–air battery showed a peak power density of 130 mW cm−2 and a charge–discharge cycle life of 480 h at a current density of 5 mA cm−2, with a voltage gap of only 0.92 V. In addition, the assembled solid-state zinc–air battery also exhibits a charge–discharge cycle life of 11 h at a current density of 5 mA cm−2, and two solid-state batteries connected in series can also drive LED lights. This study provides new insights for the rational design of nickel–iron sulfides with a layered nanosheet-core–shell structure for electrocatalysis and renewable energy applications.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta03554e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemical reduction ; Core-shell structure ; Current density ; Design ; Discharge ; Electrocatalysts ; Energy storage ; Heterojunctions ; High temperature ; Iron ; Iron sulfides ; Metal air batteries ; Nanorods ; Nanostructure ; Nickel ; Oxygen ; Oxygen evolution reactions ; Oxygen reduction reactions ; Pyrite ; Renewable energy ; Solid state ; Storage batteries ; Sulfurization ; Sustainability ; Sustainable development ; Synthesis ; Zinc ; Zinc-oxygen batteries</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022-08, Vol.10 (31), p.16627-16638</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wu, Lei</creatorcontrib><creatorcontrib>Li, Jixiao</creatorcontrib><creatorcontrib>Shi, Chuan</creatorcontrib><creatorcontrib>Li, Yongliang</creatorcontrib><creatorcontrib>Mi, Hongwei</creatorcontrib><creatorcontrib>Deng, Libo</creatorcontrib><creatorcontrib>Zhang, Qianling</creatorcontrib><creatorcontrib>He, Chuanxin</creatorcontrib><creatorcontrib>Ren, Xiangzhong</creatorcontrib><title>Rational design of the FeS2/NiS2 heterojunction interface structure to enhance the oxygen electrocatalytic performance for zinc–air batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Fine design of nanostructures of bifunctional electrocatalysts and developing low-cost, efficient and durable electrocatalytic materials are important directions for the development of sustainable energy storage and conversion devices such as electrolytic water and metal–air batteries. In this work, nickel–iron layered sulfide hollow double-shell nanorods were synthesized by a one-step hydrothermal self-templating process followed by a high-temperature sulfurization process. Benefiting from the large electrochemically active surface area of the layered nanosheets, the electronic regulation of the FeS2/NiS2 heterogeneous interface, and the mechanical support of the hollow core–shell structured nanorods, the synthesized FeS2/NiS2 hollow multi-shell nanorods with an open layered array structure (FeS2/NiS2 HDSNRs) show better electrocatalytic performance than the single component FeS2 and NiS2 electrocatalysts in alkaline electrolyte solution. In 1.0 M KOH solution for the oxygen reduction reaction, the FeS2/NiS2 HDSNRs electrocatalyst has a half-wave potential of 0.80 V vs. RHE and an overpotential of only 280 mV at a current density of 50 mA cm−2 for oxygen evolution reaction and the Tafel slope is only 33 mV dec−1. The FeS2/NiS2 HDSNRs electrocatalyst used as the cathode of a liquid zinc–air battery showed a peak power density of 130 mW cm−2 and a charge–discharge cycle life of 480 h at a current density of 5 mA cm−2, with a voltage gap of only 0.92 V. In addition, the assembled solid-state zinc–air battery also exhibits a charge–discharge cycle life of 11 h at a current density of 5 mA cm−2, and two solid-state batteries connected in series can also drive LED lights. This study provides new insights for the rational design of nickel–iron sulfides with a layered nanosheet-core–shell structure for electrocatalysis and renewable energy applications.</description><subject>Chemical reduction</subject><subject>Core-shell structure</subject><subject>Current density</subject><subject>Design</subject><subject>Discharge</subject><subject>Electrocatalysts</subject><subject>Energy storage</subject><subject>Heterojunctions</subject><subject>High temperature</subject><subject>Iron</subject><subject>Iron sulfides</subject><subject>Metal air batteries</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Nickel</subject><subject>Oxygen</subject><subject>Oxygen evolution reactions</subject><subject>Oxygen reduction reactions</subject><subject>Pyrite</subject><subject>Renewable energy</subject><subject>Solid state</subject><subject>Storage batteries</subject><subject>Sulfurization</subject><subject>Sustainability</subject><subject>Sustainable development</subject><subject>Synthesis</subject><subject>Zinc</subject><subject>Zinc-oxygen batteries</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9UMtKAzEUDaJg0W78goDrsXnNTLKUYlUoClbXJZO5aVPGpCYZsK78Axf-oV_iVMW7OQ_OOYuL0BklF5RwNWlZ1oSXpYADNGKkJEUtVHX4z6U8RuOUNmQ4SUil1Ah9POjsgtcdbiG5lcfB4rwGPIMFm9y5BcNryBDDpvdmH8TOD9JqAzjl2JvcR8A5YPBr7Qdz3w2vuxV4DB2YHIPRWXe77AzeDsUQn39yA8Fvzpuv90_tIm50HmYdpFN0ZHWXYPyHJ-hpdvU4vSnm99e308t5saWS50LWklPLTSWEkrJRNSWato0SlkvTVIJRo5URpaWWUtUIQcuKU2IbZSSpWctP0Pnv7jaGlx5SXm5CH4c_pCWrCeGSM1nxb5qlaVk</recordid><startdate>20220810</startdate><enddate>20220810</enddate><creator>Wu, Lei</creator><creator>Li, Jixiao</creator><creator>Shi, Chuan</creator><creator>Li, Yongliang</creator><creator>Mi, Hongwei</creator><creator>Deng, Libo</creator><creator>Zhang, Qianling</creator><creator>He, Chuanxin</creator><creator>Ren, Xiangzhong</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20220810</creationdate><title>Rational design of the FeS2/NiS2 heterojunction interface structure to enhance the oxygen electrocatalytic performance for zinc–air batteries</title><author>Wu, Lei ; Li, Jixiao ; Shi, Chuan ; Li, Yongliang ; Mi, Hongwei ; Deng, Libo ; Zhang, Qianling ; He, Chuanxin ; Ren, Xiangzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-87831f3c644988b9710a1db94f38cb6421ca9c45f1f119b44156310fb9c8072d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemical reduction</topic><topic>Core-shell structure</topic><topic>Current density</topic><topic>Design</topic><topic>Discharge</topic><topic>Electrocatalysts</topic><topic>Energy storage</topic><topic>Heterojunctions</topic><topic>High temperature</topic><topic>Iron</topic><topic>Iron sulfides</topic><topic>Metal air batteries</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Nickel</topic><topic>Oxygen</topic><topic>Oxygen evolution reactions</topic><topic>Oxygen reduction reactions</topic><topic>Pyrite</topic><topic>Renewable energy</topic><topic>Solid state</topic><topic>Storage batteries</topic><topic>Sulfurization</topic><topic>Sustainability</topic><topic>Sustainable development</topic><topic>Synthesis</topic><topic>Zinc</topic><topic>Zinc-oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Lei</creatorcontrib><creatorcontrib>Li, Jixiao</creatorcontrib><creatorcontrib>Shi, Chuan</creatorcontrib><creatorcontrib>Li, Yongliang</creatorcontrib><creatorcontrib>Mi, Hongwei</creatorcontrib><creatorcontrib>Deng, Libo</creatorcontrib><creatorcontrib>Zhang, Qianling</creatorcontrib><creatorcontrib>He, Chuanxin</creatorcontrib><creatorcontrib>Ren, Xiangzhong</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Lei</au><au>Li, Jixiao</au><au>Shi, Chuan</au><au>Li, Yongliang</au><au>Mi, Hongwei</au><au>Deng, Libo</au><au>Zhang, Qianling</au><au>He, Chuanxin</au><au>Ren, Xiangzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational design of the FeS2/NiS2 heterojunction interface structure to enhance the oxygen electrocatalytic performance for zinc–air batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022-08-10</date><risdate>2022</risdate><volume>10</volume><issue>31</issue><spage>16627</spage><epage>16638</epage><pages>16627-16638</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Fine design of nanostructures of bifunctional electrocatalysts and developing low-cost, efficient and durable electrocatalytic materials are important directions for the development of sustainable energy storage and conversion devices such as electrolytic water and metal–air batteries. In this work, nickel–iron layered sulfide hollow double-shell nanorods were synthesized by a one-step hydrothermal self-templating process followed by a high-temperature sulfurization process. Benefiting from the large electrochemically active surface area of the layered nanosheets, the electronic regulation of the FeS2/NiS2 heterogeneous interface, and the mechanical support of the hollow core–shell structured nanorods, the synthesized FeS2/NiS2 hollow multi-shell nanorods with an open layered array structure (FeS2/NiS2 HDSNRs) show better electrocatalytic performance than the single component FeS2 and NiS2 electrocatalysts in alkaline electrolyte solution. In 1.0 M KOH solution for the oxygen reduction reaction, the FeS2/NiS2 HDSNRs electrocatalyst has a half-wave potential of 0.80 V vs. RHE and an overpotential of only 280 mV at a current density of 50 mA cm−2 for oxygen evolution reaction and the Tafel slope is only 33 mV dec−1. The FeS2/NiS2 HDSNRs electrocatalyst used as the cathode of a liquid zinc–air battery showed a peak power density of 130 mW cm−2 and a charge–discharge cycle life of 480 h at a current density of 5 mA cm−2, with a voltage gap of only 0.92 V. In addition, the assembled solid-state zinc–air battery also exhibits a charge–discharge cycle life of 11 h at a current density of 5 mA cm−2, and two solid-state batteries connected in series can also drive LED lights. This study provides new insights for the rational design of nickel–iron sulfides with a layered nanosheet-core–shell structure for electrocatalysis and renewable energy applications.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ta03554e</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2022-08, Vol.10 (31), p.16627-16638
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2700383286
source Royal Society Of Chemistry Journals 2008-
subjects Chemical reduction
Core-shell structure
Current density
Design
Discharge
Electrocatalysts
Energy storage
Heterojunctions
High temperature
Iron
Iron sulfides
Metal air batteries
Nanorods
Nanostructure
Nickel
Oxygen
Oxygen evolution reactions
Oxygen reduction reactions
Pyrite
Renewable energy
Solid state
Storage batteries
Sulfurization
Sustainability
Sustainable development
Synthesis
Zinc
Zinc-oxygen batteries
title Rational design of the FeS2/NiS2 heterojunction interface structure to enhance the oxygen electrocatalytic performance for zinc–air batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A38%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20design%20of%20the%20FeS2/NiS2%20heterojunction%20interface%20structure%20to%20enhance%20the%20oxygen%20electrocatalytic%20performance%20for%20zinc%E2%80%93air%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wu,%20Lei&rft.date=2022-08-10&rft.volume=10&rft.issue=31&rft.spage=16627&rft.epage=16638&rft.pages=16627-16638&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta03554e&rft_dat=%3Cproquest%3E2700383286%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700383286&rft_id=info:pmid/&rfr_iscdi=true