A Difference Scheme of the Decomposition Method for an Initial Boundary Value Problem for the Singularly Perturbed Transport Equation

An initial boundary value problem for the singularly perturbed transport equation is considered. A new approach to constructing the difference scheme based on a special decomposition of solution into the sum of a regular and a singular components is proposed. A difference scheme is constructed based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2022-07, Vol.62 (7), p.1193-1201
Hauptverfasser: Shishkin, G. I., Shishkina, L. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1201
container_issue 7
container_start_page 1193
container_title Computational mathematics and mathematical physics
container_volume 62
creator Shishkin, G. I.
Shishkina, L. P.
description An initial boundary value problem for the singularly perturbed transport equation is considered. A new approach to constructing the difference scheme based on a special decomposition of solution into the sum of a regular and a singular components is proposed. A difference scheme is constructed based on the solution decomposition method in which the regular and singular components of the solution are considered on uniform grids, and their -uniform convergence in the maximum norm with the first order of the convergence rate is proved. Given the grid solutions for the components, a continual solution that approximates the solution of the initial boundary value problem for the singularly perturbed transport equation is constructed, and its -uniform convergence in the maximum norm with the first order of the convergence rate is proved. The proposed approach will make it possible to use the technique of improving the convergence rate of grid solutions on embedded grids for constructing difference schemes that converge -uniformly with the second-order rate and higher for the initial boundary value problem for the singularly perturbed transport equation.
doi_str_mv 10.1134/S0965542522070089
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2700353325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700353325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-5439f395e0bc592dc9e9a91ed81964bb8cf13d2397cbcea103d046c95ae386a43</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqVwAHaWWAf8E7vxsrQFKhVRqYVt5DiTNlVit3ay6AG4NwlFYoFYjTTzvTczD6FbSu4p5fHDiigpRMwEY2RESKLO0IAKISIpJTtHg34c9fNLdBXCjhAqVcIH6HOMp2VRgAdrAK_MFmrArsDNFvAUjKv3LpRN6Sx-hWbrclw4j7XFc9t1dYUfXWtz7Y_4Q1ct4KV3WQX1N9VbrEq7aSvtqyNegm9an0GO117bsHe-wbNDq3vza3RR6CrAzU8doven2XryEi3enueT8SIyLJZNdz9XBVcCSGaEYrlRoLSikCdUyTjLElNQnjOuRiYzoCnhOYmlUUIDT6SO-RDdnXz33h1aCE26c6233cqUdalxwTkTHUVPlPEuBA9Fuvdl3T2ZUpL2aad_0u407KQJHWs34H-d_xd9AeOIgpc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700353325</pqid></control><display><type>article</type><title>A Difference Scheme of the Decomposition Method for an Initial Boundary Value Problem for the Singularly Perturbed Transport Equation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shishkin, G. I. ; Shishkina, L. P.</creator><creatorcontrib>Shishkin, G. I. ; Shishkina, L. P.</creatorcontrib><description>An initial boundary value problem for the singularly perturbed transport equation is considered. A new approach to constructing the difference scheme based on a special decomposition of solution into the sum of a regular and a singular components is proposed. A difference scheme is constructed based on the solution decomposition method in which the regular and singular components of the solution are considered on uniform grids, and their -uniform convergence in the maximum norm with the first order of the convergence rate is proved. Given the grid solutions for the components, a continual solution that approximates the solution of the initial boundary value problem for the singularly perturbed transport equation is constructed, and its -uniform convergence in the maximum norm with the first order of the convergence rate is proved. The proposed approach will make it possible to use the technique of improving the convergence rate of grid solutions on embedded grids for constructing difference schemes that converge -uniformly with the second-order rate and higher for the initial boundary value problem for the singularly perturbed transport equation.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542522070089</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Boundary value problems ; Computational Mathematics and Numerical Analysis ; Convergence ; Decomposition ; Mathematical Physics ; Mathematics ; Mathematics and Statistics ; Transport equations</subject><ispartof>Computational mathematics and mathematical physics, 2022-07, Vol.62 (7), p.1193-1201</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2022, Vol. 62, No. 7, pp. 1193–1201. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2022, Vol. 62, No. 7, pp. 1224–1232.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-5439f395e0bc592dc9e9a91ed81964bb8cf13d2397cbcea103d046c95ae386a43</citedby><cites>FETCH-LOGICAL-c246t-5439f395e0bc592dc9e9a91ed81964bb8cf13d2397cbcea103d046c95ae386a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542522070089$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542522070089$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Shishkin, G. I.</creatorcontrib><creatorcontrib>Shishkina, L. P.</creatorcontrib><title>A Difference Scheme of the Decomposition Method for an Initial Boundary Value Problem for the Singularly Perturbed Transport Equation</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>An initial boundary value problem for the singularly perturbed transport equation is considered. A new approach to constructing the difference scheme based on a special decomposition of solution into the sum of a regular and a singular components is proposed. A difference scheme is constructed based on the solution decomposition method in which the regular and singular components of the solution are considered on uniform grids, and their -uniform convergence in the maximum norm with the first order of the convergence rate is proved. Given the grid solutions for the components, a continual solution that approximates the solution of the initial boundary value problem for the singularly perturbed transport equation is constructed, and its -uniform convergence in the maximum norm with the first order of the convergence rate is proved. The proposed approach will make it possible to use the technique of improving the convergence rate of grid solutions on embedded grids for constructing difference schemes that converge -uniformly with the second-order rate and higher for the initial boundary value problem for the singularly perturbed transport equation.</description><subject>Boundary value problems</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Convergence</subject><subject>Decomposition</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Transport equations</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqVwAHaWWAf8E7vxsrQFKhVRqYVt5DiTNlVit3ay6AG4NwlFYoFYjTTzvTczD6FbSu4p5fHDiigpRMwEY2RESKLO0IAKISIpJTtHg34c9fNLdBXCjhAqVcIH6HOMp2VRgAdrAK_MFmrArsDNFvAUjKv3LpRN6Sx-hWbrclw4j7XFc9t1dYUfXWtz7Y_4Q1ct4KV3WQX1N9VbrEq7aSvtqyNegm9an0GO117bsHe-wbNDq3vza3RR6CrAzU8doven2XryEi3enueT8SIyLJZNdz9XBVcCSGaEYrlRoLSikCdUyTjLElNQnjOuRiYzoCnhOYmlUUIDT6SO-RDdnXz33h1aCE26c6233cqUdalxwTkTHUVPlPEuBA9Fuvdl3T2ZUpL2aad_0u407KQJHWs34H-d_xd9AeOIgpc</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Shishkin, G. I.</creator><creator>Shishkina, L. P.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220701</creationdate><title>A Difference Scheme of the Decomposition Method for an Initial Boundary Value Problem for the Singularly Perturbed Transport Equation</title><author>Shishkin, G. I. ; Shishkina, L. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-5439f395e0bc592dc9e9a91ed81964bb8cf13d2397cbcea103d046c95ae386a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary value problems</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Convergence</topic><topic>Decomposition</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Transport equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shishkin, G. I.</creatorcontrib><creatorcontrib>Shishkina, L. P.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shishkin, G. I.</au><au>Shishkina, L. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Difference Scheme of the Decomposition Method for an Initial Boundary Value Problem for the Singularly Perturbed Transport Equation</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>62</volume><issue>7</issue><spage>1193</spage><epage>1201</epage><pages>1193-1201</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>An initial boundary value problem for the singularly perturbed transport equation is considered. A new approach to constructing the difference scheme based on a special decomposition of solution into the sum of a regular and a singular components is proposed. A difference scheme is constructed based on the solution decomposition method in which the regular and singular components of the solution are considered on uniform grids, and their -uniform convergence in the maximum norm with the first order of the convergence rate is proved. Given the grid solutions for the components, a continual solution that approximates the solution of the initial boundary value problem for the singularly perturbed transport equation is constructed, and its -uniform convergence in the maximum norm with the first order of the convergence rate is proved. The proposed approach will make it possible to use the technique of improving the convergence rate of grid solutions on embedded grids for constructing difference schemes that converge -uniformly with the second-order rate and higher for the initial boundary value problem for the singularly perturbed transport equation.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542522070089</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-5425
ispartof Computational mathematics and mathematical physics, 2022-07, Vol.62 (7), p.1193-1201
issn 0965-5425
1555-6662
language eng
recordid cdi_proquest_journals_2700353325
source SpringerLink Journals - AutoHoldings
subjects Boundary value problems
Computational Mathematics and Numerical Analysis
Convergence
Decomposition
Mathematical Physics
Mathematics
Mathematics and Statistics
Transport equations
title A Difference Scheme of the Decomposition Method for an Initial Boundary Value Problem for the Singularly Perturbed Transport Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A39%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Difference%20Scheme%20of%20the%20Decomposition%20Method%20for%20an%20Initial%20Boundary%20Value%20Problem%20for%20the%20Singularly%20Perturbed%20Transport%20Equation&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Shishkin,%20G.%20I.&rft.date=2022-07-01&rft.volume=62&rft.issue=7&rft.spage=1193&rft.epage=1201&rft.pages=1193-1201&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542522070089&rft_dat=%3Cproquest_cross%3E2700353325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700353325&rft_id=info:pmid/&rfr_iscdi=true