Beyond wreath and block
We investigate a semigroup construction generalising the two-sided wreath product. We develop the foundations of this construction and show that for groups it is isomorphic to the usual wreath product. We also show that it gives a slightly finer version of the decomposition in the Krohn–Rhodes Theor...
Gespeichert in:
Veröffentlicht in: | Semigroup forum 2022-08, Vol.105 (1), p.96-116 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 116 |
---|---|
container_issue | 1 |
container_start_page | 96 |
container_title | Semigroup forum |
container_volume | 105 |
creator | Botur, Michal Kowalski, Tomasz |
description | We investigate a semigroup construction generalising the two-sided wreath product. We develop the foundations of this construction and show that for groups it is isomorphic to the usual wreath product. We also show that it gives a slightly finer version of the decomposition in the Krohn–Rhodes Theorem, in which the three-element flip-flop monoid is replaced by the two-element semilattice. |
doi_str_mv | 10.1007/s00233-022-10291-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2700353247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700353247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-985442d73d463641b63297aaa817f6dd3a3c0508a27cc4aafb429598e49f0d6d3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMouFbPgqeC5-hkJtlsjlqsCgUveg7ZJKvW2q3JFum_N7qCN08zA--9eXyMnQm4EAD6MgMgEQdELgCN4GqPVUISchSk91kFQJoLI_CQHeW8hHJDTRU7vY67fh2mnym64WXqytquev92zA46t8rx5HdO2NP85nF2xxcPt_ezqwX3CDBw0ygpMWgKsqZairYmNNo51wjd1SGQIw8KGofae-lc10o0yjRRmg5CHWjCzsfcTeo_tjEPdtlv07q8tKhLSUUodVHhqPKpzznFzm7S67tLOyvAfgOwIwBbANgfAFYVE42mXMTr55j-ov9xfQFTFFqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700353247</pqid></control><display><type>article</type><title>Beyond wreath and block</title><source>Springer Nature - Complete Springer Journals</source><creator>Botur, Michal ; Kowalski, Tomasz</creator><creatorcontrib>Botur, Michal ; Kowalski, Tomasz</creatorcontrib><description>We investigate a semigroup construction generalising the two-sided wreath product. We develop the foundations of this construction and show that for groups it is isomorphic to the usual wreath product. We also show that it gives a slightly finer version of the decomposition in the Krohn–Rhodes Theorem, in which the three-element flip-flop monoid is replaced by the two-element semilattice.</description><identifier>ISSN: 0037-1912</identifier><identifier>EISSN: 1432-2137</identifier><identifier>DOI: 10.1007/s00233-022-10291-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Mathematics ; Mathematics and Statistics ; Monoids ; Research Article</subject><ispartof>Semigroup forum, 2022-08, Vol.105 (1), p.96-116</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-985442d73d463641b63297aaa817f6dd3a3c0508a27cc4aafb429598e49f0d6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00233-022-10291-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00233-022-10291-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Botur, Michal</creatorcontrib><creatorcontrib>Kowalski, Tomasz</creatorcontrib><title>Beyond wreath and block</title><title>Semigroup forum</title><addtitle>Semigroup Forum</addtitle><description>We investigate a semigroup construction generalising the two-sided wreath product. We develop the foundations of this construction and show that for groups it is isomorphic to the usual wreath product. We also show that it gives a slightly finer version of the decomposition in the Krohn–Rhodes Theorem, in which the three-element flip-flop monoid is replaced by the two-element semilattice.</description><subject>Algebra</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Monoids</subject><subject>Research Article</subject><issn>0037-1912</issn><issn>1432-2137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMouFbPgqeC5-hkJtlsjlqsCgUveg7ZJKvW2q3JFum_N7qCN08zA--9eXyMnQm4EAD6MgMgEQdELgCN4GqPVUISchSk91kFQJoLI_CQHeW8hHJDTRU7vY67fh2mnym64WXqytquev92zA46t8rx5HdO2NP85nF2xxcPt_ezqwX3CDBw0ygpMWgKsqZairYmNNo51wjd1SGQIw8KGofae-lc10o0yjRRmg5CHWjCzsfcTeo_tjEPdtlv07q8tKhLSUUodVHhqPKpzznFzm7S67tLOyvAfgOwIwBbANgfAFYVE42mXMTr55j-ov9xfQFTFFqQ</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Botur, Michal</creator><creator>Kowalski, Tomasz</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220801</creationdate><title>Beyond wreath and block</title><author>Botur, Michal ; Kowalski, Tomasz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-985442d73d463641b63297aaa817f6dd3a3c0508a27cc4aafb429598e49f0d6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Monoids</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Botur, Michal</creatorcontrib><creatorcontrib>Kowalski, Tomasz</creatorcontrib><collection>CrossRef</collection><jtitle>Semigroup forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Botur, Michal</au><au>Kowalski, Tomasz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beyond wreath and block</atitle><jtitle>Semigroup forum</jtitle><stitle>Semigroup Forum</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>105</volume><issue>1</issue><spage>96</spage><epage>116</epage><pages>96-116</pages><issn>0037-1912</issn><eissn>1432-2137</eissn><abstract>We investigate a semigroup construction generalising the two-sided wreath product. We develop the foundations of this construction and show that for groups it is isomorphic to the usual wreath product. We also show that it gives a slightly finer version of the decomposition in the Krohn–Rhodes Theorem, in which the three-element flip-flop monoid is replaced by the two-element semilattice.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00233-022-10291-5</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0037-1912 |
ispartof | Semigroup forum, 2022-08, Vol.105 (1), p.96-116 |
issn | 0037-1912 1432-2137 |
language | eng |
recordid | cdi_proquest_journals_2700353247 |
source | Springer Nature - Complete Springer Journals |
subjects | Algebra Mathematics Mathematics and Statistics Monoids Research Article |
title | Beyond wreath and block |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A42%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beyond%20wreath%20and%20block&rft.jtitle=Semigroup%20forum&rft.au=Botur,%20Michal&rft.date=2022-08-01&rft.volume=105&rft.issue=1&rft.spage=96&rft.epage=116&rft.pages=96-116&rft.issn=0037-1912&rft.eissn=1432-2137&rft_id=info:doi/10.1007/s00233-022-10291-5&rft_dat=%3Cproquest_cross%3E2700353247%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700353247&rft_id=info:pmid/&rfr_iscdi=true |