Construction of Optimal Interpolation Formulas in the Sobolev Space
In the present paper, using the discrete analogue of the differential operator d 2 m dx 2 m , optimal interpolation formulas are constructed in the L 2 4 (0, 1) space. The explicit formulas for coefficients of optimal interpolation formulas are obtained.
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2022-07, Vol.264 (6), p.782-793 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 793 |
---|---|
container_issue | 6 |
container_start_page | 782 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 264 |
creator | Shadimetov, Kh. M. Hayotov, A. R. Nuraliev, F. A. |
description | In the present paper, using the discrete analogue of the differential operator
d
2
m
dx
2
m
, optimal interpolation formulas are constructed in the
L
2
4
(0, 1) space. The explicit formulas for coefficients of optimal interpolation formulas are obtained. |
doi_str_mv | 10.1007/s10958-022-06035-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2700353172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A714863149</galeid><sourcerecordid>A714863149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347z-da117162cfdd0f931fe0af30e985495eae6fdff3d50eaa0e37e5974d16e980c13</originalsourceid><addsrcrecordid>eNp9kV1LwzAUhosoOKd_wKuCV15ET5q2aS_H8GMgCE6vQ0xPZkeX1CQV3a83OmEMhpyLHJLnOSF5k-ScwhUF4NeeQl1UBLKMQAmsIOuDZEQLzkjF6-Iw9sAzwhjPj5MT75cQpbJio2Q6tcYHN6jQWpNanT72oV3JLp2ZgK63nfw9uLVuNXTSp61Jwxumc_tqO_xI571UeJocadl5PPtbx8nL7c3z9J48PN7NppMHoljO16SRlHJaZko3DeiaUY0gNQOsqyKvC5RY6kZr1hSAUgIyjkXN84aWkQBF2Ti52MztnX0f0AextIMz8UqRcYivZpRnW2ohOxSt0TY4qVatV2LCaV6VjOZ1pMgeaoEGneysQd3G7R3-ag8fq8FVq_YKlztCZAJ-hoUcvBez-dMum21Y5az3DrXoXQzBfQkK4idfsclXxHzFb75iHSW2kXyEzQLd9jf-sb4Bd8GmUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700353172</pqid></control><display><type>article</type><title>Construction of Optimal Interpolation Formulas in the Sobolev Space</title><source>Springer Nature - Complete Springer Journals</source><creator>Shadimetov, Kh. M. ; Hayotov, A. R. ; Nuraliev, F. A.</creator><creatorcontrib>Shadimetov, Kh. M. ; Hayotov, A. R. ; Nuraliev, F. A.</creatorcontrib><description>In the present paper, using the discrete analogue of the differential operator
d
2
m
dx
2
m
, optimal interpolation formulas are constructed in the
L
2
4
(0, 1) space. The explicit formulas for coefficients of optimal interpolation formulas are obtained.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-022-06035-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Differential equations ; Interpolation ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Sobolev space</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2022-07, Vol.264 (6), p.782-793</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347z-da117162cfdd0f931fe0af30e985495eae6fdff3d50eaa0e37e5974d16e980c13</citedby><cites>FETCH-LOGICAL-c347z-da117162cfdd0f931fe0af30e985495eae6fdff3d50eaa0e37e5974d16e980c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-022-06035-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-022-06035-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Shadimetov, Kh. M.</creatorcontrib><creatorcontrib>Hayotov, A. R.</creatorcontrib><creatorcontrib>Nuraliev, F. A.</creatorcontrib><title>Construction of Optimal Interpolation Formulas in the Sobolev Space</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>In the present paper, using the discrete analogue of the differential operator
d
2
m
dx
2
m
, optimal interpolation formulas are constructed in the
L
2
4
(0, 1) space. The explicit formulas for coefficients of optimal interpolation formulas are obtained.</description><subject>Differential equations</subject><subject>Interpolation</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Sobolev space</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kV1LwzAUhosoOKd_wKuCV15ET5q2aS_H8GMgCE6vQ0xPZkeX1CQV3a83OmEMhpyLHJLnOSF5k-ScwhUF4NeeQl1UBLKMQAmsIOuDZEQLzkjF6-Iw9sAzwhjPj5MT75cQpbJio2Q6tcYHN6jQWpNanT72oV3JLp2ZgK63nfw9uLVuNXTSp61Jwxumc_tqO_xI571UeJocadl5PPtbx8nL7c3z9J48PN7NppMHoljO16SRlHJaZko3DeiaUY0gNQOsqyKvC5RY6kZr1hSAUgIyjkXN84aWkQBF2Ti52MztnX0f0AextIMz8UqRcYivZpRnW2ohOxSt0TY4qVatV2LCaV6VjOZ1pMgeaoEGneysQd3G7R3-ag8fq8FVq_YKlztCZAJ-hoUcvBez-dMum21Y5az3DrXoXQzBfQkK4idfsclXxHzFb75iHSW2kXyEzQLd9jf-sb4Bd8GmUA</recordid><startdate>20220704</startdate><enddate>20220704</enddate><creator>Shadimetov, Kh. M.</creator><creator>Hayotov, A. R.</creator><creator>Nuraliev, F. A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20220704</creationdate><title>Construction of Optimal Interpolation Formulas in the Sobolev Space</title><author>Shadimetov, Kh. M. ; Hayotov, A. R. ; Nuraliev, F. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347z-da117162cfdd0f931fe0af30e985495eae6fdff3d50eaa0e37e5974d16e980c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Differential equations</topic><topic>Interpolation</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Sobolev space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shadimetov, Kh. M.</creatorcontrib><creatorcontrib>Hayotov, A. R.</creatorcontrib><creatorcontrib>Nuraliev, F. A.</creatorcontrib><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shadimetov, Kh. M.</au><au>Hayotov, A. R.</au><au>Nuraliev, F. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of Optimal Interpolation Formulas in the Sobolev Space</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2022-07-04</date><risdate>2022</risdate><volume>264</volume><issue>6</issue><spage>782</spage><epage>793</epage><pages>782-793</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>In the present paper, using the discrete analogue of the differential operator
d
2
m
dx
2
m
, optimal interpolation formulas are constructed in the
L
2
4
(0, 1) space. The explicit formulas for coefficients of optimal interpolation formulas are obtained.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-022-06035-z</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2022-07, Vol.264 (6), p.782-793 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2700353172 |
source | Springer Nature - Complete Springer Journals |
subjects | Differential equations Interpolation Mathematics Mathematics and Statistics Operators (mathematics) Sobolev space |
title | Construction of Optimal Interpolation Formulas in the Sobolev Space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20Optimal%20Interpolation%20Formulas%20in%20the%20Sobolev%20Space&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Shadimetov,%20Kh.%20M.&rft.date=2022-07-04&rft.volume=264&rft.issue=6&rft.spage=782&rft.epage=793&rft.pages=782-793&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-022-06035-z&rft_dat=%3Cgale_proqu%3EA714863149%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700353172&rft_id=info:pmid/&rft_galeid=A714863149&rfr_iscdi=true |