DP\(^2\)-VAE: Differentially Private Pre-trained Variational Autoencoders
Modern machine learning systems achieve great success when trained on large datasets. However, these datasets usually contain sensitive information (e.g. medical records, face images), leading to serious privacy concerns. Differentially private generative models (DPGMs) emerge as a solution to circu...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-11 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Jiang, Dihong Zhang, Guojun Karami, Mahdi Chen, Xi Shao, Yunfeng Yu, Yaoliang |
description | Modern machine learning systems achieve great success when trained on large datasets. However, these datasets usually contain sensitive information (e.g. medical records, face images), leading to serious privacy concerns. Differentially private generative models (DPGMs) emerge as a solution to circumvent such privacy concerns by generating privatized sensitive data. Similar to other differentially private (DP) learners, the major challenge for DPGM is also how to achieve a subtle balance between utility and privacy. We propose DP\(^2\)-VAE, a novel training mechanism for variational autoencoders (VAE) with provable DP guarantees and improved utility via \emph{pre-training on private data}. Under the same DP constraints, DP\(^2\)-VAE minimizes the perturbation noise during training, and hence improves utility. DP\(^2\)-VAE is very flexible and easily amenable to many other VAE variants. Theoretically, we study the effect of pretraining on private data. Empirically, we conduct extensive experiments on image datasets to illustrate our superiority over baselines under various privacy budgets and evaluation metrics. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2700155629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700155629</sourcerecordid><originalsourceid>FETCH-proquest_journals_27001556293</originalsourceid><addsrcrecordid>eNqNy8EKgjAcgPERBEn5DoMudRjMrWl1kzTq5iE8STLyL0zGVtsMevs89ACdfpfvm6GIcZ6Q_Y6xBYq9HyilLM2YEDxC16JqNnfWbEmdl0dcqL4HByYoqfUHV069ZYBJIMFJZaDDtXRKBmWN1DgfgwXzsB04v0LzXmoP8c8lWp_L2-lCns6-RvChHezopsu3LKM0ESJlB_5f9QXKkjtW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700155629</pqid></control><display><type>article</type><title>DP\(^2\)-VAE: Differentially Private Pre-trained Variational Autoencoders</title><source>Free E- Journals</source><creator>Jiang, Dihong ; Zhang, Guojun ; Karami, Mahdi ; Chen, Xi ; Shao, Yunfeng ; Yu, Yaoliang</creator><creatorcontrib>Jiang, Dihong ; Zhang, Guojun ; Karami, Mahdi ; Chen, Xi ; Shao, Yunfeng ; Yu, Yaoliang</creatorcontrib><description>Modern machine learning systems achieve great success when trained on large datasets. However, these datasets usually contain sensitive information (e.g. medical records, face images), leading to serious privacy concerns. Differentially private generative models (DPGMs) emerge as a solution to circumvent such privacy concerns by generating privatized sensitive data. Similar to other differentially private (DP) learners, the major challenge for DPGM is also how to achieve a subtle balance between utility and privacy. We propose DP\(^2\)-VAE, a novel training mechanism for variational autoencoders (VAE) with provable DP guarantees and improved utility via \emph{pre-training on private data}. Under the same DP constraints, DP\(^2\)-VAE minimizes the perturbation noise during training, and hence improves utility. DP\(^2\)-VAE is very flexible and easily amenable to many other VAE variants. Theoretically, we study the effect of pretraining on private data. Empirically, we conduct extensive experiments on image datasets to illustrate our superiority over baselines under various privacy budgets and evaluation metrics.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Machine learning ; Perturbation ; Privacy ; Training</subject><ispartof>arXiv.org, 2022-11</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Jiang, Dihong</creatorcontrib><creatorcontrib>Zhang, Guojun</creatorcontrib><creatorcontrib>Karami, Mahdi</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Shao, Yunfeng</creatorcontrib><creatorcontrib>Yu, Yaoliang</creatorcontrib><title>DP\(^2\)-VAE: Differentially Private Pre-trained Variational Autoencoders</title><title>arXiv.org</title><description>Modern machine learning systems achieve great success when trained on large datasets. However, these datasets usually contain sensitive information (e.g. medical records, face images), leading to serious privacy concerns. Differentially private generative models (DPGMs) emerge as a solution to circumvent such privacy concerns by generating privatized sensitive data. Similar to other differentially private (DP) learners, the major challenge for DPGM is also how to achieve a subtle balance between utility and privacy. We propose DP\(^2\)-VAE, a novel training mechanism for variational autoencoders (VAE) with provable DP guarantees and improved utility via \emph{pre-training on private data}. Under the same DP constraints, DP\(^2\)-VAE minimizes the perturbation noise during training, and hence improves utility. DP\(^2\)-VAE is very flexible and easily amenable to many other VAE variants. Theoretically, we study the effect of pretraining on private data. Empirically, we conduct extensive experiments on image datasets to illustrate our superiority over baselines under various privacy budgets and evaluation metrics.</description><subject>Datasets</subject><subject>Machine learning</subject><subject>Perturbation</subject><subject>Privacy</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNy8EKgjAcgPERBEn5DoMudRjMrWl1kzTq5iE8STLyL0zGVtsMevs89ACdfpfvm6GIcZ6Q_Y6xBYq9HyilLM2YEDxC16JqNnfWbEmdl0dcqL4HByYoqfUHV069ZYBJIMFJZaDDtXRKBmWN1DgfgwXzsB04v0LzXmoP8c8lWp_L2-lCns6-RvChHezopsu3LKM0ESJlB_5f9QXKkjtW</recordid><startdate>20221102</startdate><enddate>20221102</enddate><creator>Jiang, Dihong</creator><creator>Zhang, Guojun</creator><creator>Karami, Mahdi</creator><creator>Chen, Xi</creator><creator>Shao, Yunfeng</creator><creator>Yu, Yaoliang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221102</creationdate><title>DP\(^2\)-VAE: Differentially Private Pre-trained Variational Autoencoders</title><author>Jiang, Dihong ; Zhang, Guojun ; Karami, Mahdi ; Chen, Xi ; Shao, Yunfeng ; Yu, Yaoliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27001556293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Datasets</topic><topic>Machine learning</topic><topic>Perturbation</topic><topic>Privacy</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Dihong</creatorcontrib><creatorcontrib>Zhang, Guojun</creatorcontrib><creatorcontrib>Karami, Mahdi</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Shao, Yunfeng</creatorcontrib><creatorcontrib>Yu, Yaoliang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Dihong</au><au>Zhang, Guojun</au><au>Karami, Mahdi</au><au>Chen, Xi</au><au>Shao, Yunfeng</au><au>Yu, Yaoliang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>DP\(^2\)-VAE: Differentially Private Pre-trained Variational Autoencoders</atitle><jtitle>arXiv.org</jtitle><date>2022-11-02</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Modern machine learning systems achieve great success when trained on large datasets. However, these datasets usually contain sensitive information (e.g. medical records, face images), leading to serious privacy concerns. Differentially private generative models (DPGMs) emerge as a solution to circumvent such privacy concerns by generating privatized sensitive data. Similar to other differentially private (DP) learners, the major challenge for DPGM is also how to achieve a subtle balance between utility and privacy. We propose DP\(^2\)-VAE, a novel training mechanism for variational autoencoders (VAE) with provable DP guarantees and improved utility via \emph{pre-training on private data}. Under the same DP constraints, DP\(^2\)-VAE minimizes the perturbation noise during training, and hence improves utility. DP\(^2\)-VAE is very flexible and easily amenable to many other VAE variants. Theoretically, we study the effect of pretraining on private data. Empirically, we conduct extensive experiments on image datasets to illustrate our superiority over baselines under various privacy budgets and evaluation metrics.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2700155629 |
source | Free E- Journals |
subjects | Datasets Machine learning Perturbation Privacy Training |
title | DP\(^2\)-VAE: Differentially Private Pre-trained Variational Autoencoders |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A01%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=DP%5C(%5E2%5C)-VAE:%20Differentially%20Private%20Pre-trained%20Variational%20Autoencoders&rft.jtitle=arXiv.org&rft.au=Jiang,%20Dihong&rft.date=2022-11-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2700155629%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700155629&rft_id=info:pmid/&rfr_iscdi=true |