DP\(^2\)-VAE: Differentially Private Pre-trained Variational Autoencoders

Modern machine learning systems achieve great success when trained on large datasets. However, these datasets usually contain sensitive information (e.g. medical records, face images), leading to serious privacy concerns. Differentially private generative models (DPGMs) emerge as a solution to circu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-11
Hauptverfasser: Jiang, Dihong, Zhang, Guojun, Karami, Mahdi, Chen, Xi, Shao, Yunfeng, Yu, Yaoliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jiang, Dihong
Zhang, Guojun
Karami, Mahdi
Chen, Xi
Shao, Yunfeng
Yu, Yaoliang
description Modern machine learning systems achieve great success when trained on large datasets. However, these datasets usually contain sensitive information (e.g. medical records, face images), leading to serious privacy concerns. Differentially private generative models (DPGMs) emerge as a solution to circumvent such privacy concerns by generating privatized sensitive data. Similar to other differentially private (DP) learners, the major challenge for DPGM is also how to achieve a subtle balance between utility and privacy. We propose DP\(^2\)-VAE, a novel training mechanism for variational autoencoders (VAE) with provable DP guarantees and improved utility via \emph{pre-training on private data}. Under the same DP constraints, DP\(^2\)-VAE minimizes the perturbation noise during training, and hence improves utility. DP\(^2\)-VAE is very flexible and easily amenable to many other VAE variants. Theoretically, we study the effect of pretraining on private data. Empirically, we conduct extensive experiments on image datasets to illustrate our superiority over baselines under various privacy budgets and evaluation metrics.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2700155629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700155629</sourcerecordid><originalsourceid>FETCH-proquest_journals_27001556293</originalsourceid><addsrcrecordid>eNqNy8EKgjAcgPERBEn5DoMudRjMrWl1kzTq5iE8STLyL0zGVtsMevs89ACdfpfvm6GIcZ6Q_Y6xBYq9HyilLM2YEDxC16JqNnfWbEmdl0dcqL4HByYoqfUHV069ZYBJIMFJZaDDtXRKBmWN1DgfgwXzsB04v0LzXmoP8c8lWp_L2-lCns6-RvChHezopsu3LKM0ESJlB_5f9QXKkjtW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700155629</pqid></control><display><type>article</type><title>DP\(^2\)-VAE: Differentially Private Pre-trained Variational Autoencoders</title><source>Free E- Journals</source><creator>Jiang, Dihong ; Zhang, Guojun ; Karami, Mahdi ; Chen, Xi ; Shao, Yunfeng ; Yu, Yaoliang</creator><creatorcontrib>Jiang, Dihong ; Zhang, Guojun ; Karami, Mahdi ; Chen, Xi ; Shao, Yunfeng ; Yu, Yaoliang</creatorcontrib><description>Modern machine learning systems achieve great success when trained on large datasets. However, these datasets usually contain sensitive information (e.g. medical records, face images), leading to serious privacy concerns. Differentially private generative models (DPGMs) emerge as a solution to circumvent such privacy concerns by generating privatized sensitive data. Similar to other differentially private (DP) learners, the major challenge for DPGM is also how to achieve a subtle balance between utility and privacy. We propose DP\(^2\)-VAE, a novel training mechanism for variational autoencoders (VAE) with provable DP guarantees and improved utility via \emph{pre-training on private data}. Under the same DP constraints, DP\(^2\)-VAE minimizes the perturbation noise during training, and hence improves utility. DP\(^2\)-VAE is very flexible and easily amenable to many other VAE variants. Theoretically, we study the effect of pretraining on private data. Empirically, we conduct extensive experiments on image datasets to illustrate our superiority over baselines under various privacy budgets and evaluation metrics.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Machine learning ; Perturbation ; Privacy ; Training</subject><ispartof>arXiv.org, 2022-11</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Jiang, Dihong</creatorcontrib><creatorcontrib>Zhang, Guojun</creatorcontrib><creatorcontrib>Karami, Mahdi</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Shao, Yunfeng</creatorcontrib><creatorcontrib>Yu, Yaoliang</creatorcontrib><title>DP\(^2\)-VAE: Differentially Private Pre-trained Variational Autoencoders</title><title>arXiv.org</title><description>Modern machine learning systems achieve great success when trained on large datasets. However, these datasets usually contain sensitive information (e.g. medical records, face images), leading to serious privacy concerns. Differentially private generative models (DPGMs) emerge as a solution to circumvent such privacy concerns by generating privatized sensitive data. Similar to other differentially private (DP) learners, the major challenge for DPGM is also how to achieve a subtle balance between utility and privacy. We propose DP\(^2\)-VAE, a novel training mechanism for variational autoencoders (VAE) with provable DP guarantees and improved utility via \emph{pre-training on private data}. Under the same DP constraints, DP\(^2\)-VAE minimizes the perturbation noise during training, and hence improves utility. DP\(^2\)-VAE is very flexible and easily amenable to many other VAE variants. Theoretically, we study the effect of pretraining on private data. Empirically, we conduct extensive experiments on image datasets to illustrate our superiority over baselines under various privacy budgets and evaluation metrics.</description><subject>Datasets</subject><subject>Machine learning</subject><subject>Perturbation</subject><subject>Privacy</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNy8EKgjAcgPERBEn5DoMudRjMrWl1kzTq5iE8STLyL0zGVtsMevs89ACdfpfvm6GIcZ6Q_Y6xBYq9HyilLM2YEDxC16JqNnfWbEmdl0dcqL4HByYoqfUHV069ZYBJIMFJZaDDtXRKBmWN1DgfgwXzsB04v0LzXmoP8c8lWp_L2-lCns6-RvChHezopsu3LKM0ESJlB_5f9QXKkjtW</recordid><startdate>20221102</startdate><enddate>20221102</enddate><creator>Jiang, Dihong</creator><creator>Zhang, Guojun</creator><creator>Karami, Mahdi</creator><creator>Chen, Xi</creator><creator>Shao, Yunfeng</creator><creator>Yu, Yaoliang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221102</creationdate><title>DP\(^2\)-VAE: Differentially Private Pre-trained Variational Autoencoders</title><author>Jiang, Dihong ; Zhang, Guojun ; Karami, Mahdi ; Chen, Xi ; Shao, Yunfeng ; Yu, Yaoliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27001556293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Datasets</topic><topic>Machine learning</topic><topic>Perturbation</topic><topic>Privacy</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Dihong</creatorcontrib><creatorcontrib>Zhang, Guojun</creatorcontrib><creatorcontrib>Karami, Mahdi</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Shao, Yunfeng</creatorcontrib><creatorcontrib>Yu, Yaoliang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Dihong</au><au>Zhang, Guojun</au><au>Karami, Mahdi</au><au>Chen, Xi</au><au>Shao, Yunfeng</au><au>Yu, Yaoliang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>DP\(^2\)-VAE: Differentially Private Pre-trained Variational Autoencoders</atitle><jtitle>arXiv.org</jtitle><date>2022-11-02</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Modern machine learning systems achieve great success when trained on large datasets. However, these datasets usually contain sensitive information (e.g. medical records, face images), leading to serious privacy concerns. Differentially private generative models (DPGMs) emerge as a solution to circumvent such privacy concerns by generating privatized sensitive data. Similar to other differentially private (DP) learners, the major challenge for DPGM is also how to achieve a subtle balance between utility and privacy. We propose DP\(^2\)-VAE, a novel training mechanism for variational autoencoders (VAE) with provable DP guarantees and improved utility via \emph{pre-training on private data}. Under the same DP constraints, DP\(^2\)-VAE minimizes the perturbation noise during training, and hence improves utility. DP\(^2\)-VAE is very flexible and easily amenable to many other VAE variants. Theoretically, we study the effect of pretraining on private data. Empirically, we conduct extensive experiments on image datasets to illustrate our superiority over baselines under various privacy budgets and evaluation metrics.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2700155629
source Free E- Journals
subjects Datasets
Machine learning
Perturbation
Privacy
Training
title DP\(^2\)-VAE: Differentially Private Pre-trained Variational Autoencoders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A01%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=DP%5C(%5E2%5C)-VAE:%20Differentially%20Private%20Pre-trained%20Variational%20Autoencoders&rft.jtitle=arXiv.org&rft.au=Jiang,%20Dihong&rft.date=2022-11-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2700155629%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700155629&rft_id=info:pmid/&rfr_iscdi=true