Numerical computation of the equilibrium-reduced density matrix for strongly coupled open quantum systems
We describe a numerical algorithm for approximating the equilibrium-reduced density matrix and the effective (mean force) Hamiltonian for a set of system spins coupled strongly to a set of bath spins when the total system (system + bath) is held in canonical thermal equilibrium by weak coupling with...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2022-08, Vol.157 (6), p.64106-064106 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 064106 |
---|---|
container_issue | 6 |
container_start_page | 64106 |
container_title | The Journal of chemical physics |
container_volume | 157 |
creator | Chen, Tyler Cheng, Yu-Chen |
description | We describe a numerical algorithm for approximating the equilibrium-reduced density matrix and the effective (mean force) Hamiltonian for a set of system spins coupled strongly to a set of bath spins when the total system (system + bath) is held in canonical thermal equilibrium by weak coupling with a “super-bath”. Our approach is a generalization of now standard typicality algorithms for computing the quantum expectation value of observables of bare quantum systems via trace estimators and Krylov subspace methods. In particular, our algorithm makes use of the fact that the reduced system density, when the bath is measured in a given random state, tends to concentrate about the corresponding thermodynamic averaged reduced system density. Theoretical error analysis and numerical experiments are given to validate the accuracy of our algorithm. Further numerical experiments demonstrate the potential of our approach for applications including the study of quantum phase transitions and entanglement entropy for long range interaction systems. |
doi_str_mv | 10.1063/5.0099761 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2700121298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2702181348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-b122eb063d9a847374020e9bcd1014a50df7be05fbd562f73256775d378b5df33</originalsourceid><addsrcrecordid>eNp90EtLxDAUBeAgCo6jC_9BwI0KHW_SpmmWIr5g0I2uS9qkmqFtOnmI_fd2mEFBwdXdfBzOPQidElgQyNMrtgAQgudkD80IFCLhuYB9NAOgJBE55IfoyPsVABBOsxkyT7HTztSyxbXthhhkMLbHtsHhXWO9jqY1lTOxS5xWsdYKK917E0bcyeDMJ26swz4427-14xQRh3YydtA9XkfZh9hhP_qgO3-MDhrZen2yu3P0enf7cvOQLJ_vH2-ul0mdChaSilCqq-kVJWSR8ZRnQEGLqlYESCYZqIZXGlhTKZbThqeU5ZwzlfKiYqpJ0zk63-YOzq6j9qHsjK9128pe2-hLyqcpCpJmxUTPftGVja6f2m0UEEqo2KiLraqd9d7pphyc6aQbSwLlZvSSlbvRJ3u5tb422ym_8Yd1P7Acpqr_4L_JXzF9kSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700121298</pqid></control><display><type>article</type><title>Numerical computation of the equilibrium-reduced density matrix for strongly coupled open quantum systems</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Chen, Tyler ; Cheng, Yu-Chen</creator><creatorcontrib>Chen, Tyler ; Cheng, Yu-Chen</creatorcontrib><description>We describe a numerical algorithm for approximating the equilibrium-reduced density matrix and the effective (mean force) Hamiltonian for a set of system spins coupled strongly to a set of bath spins when the total system (system + bath) is held in canonical thermal equilibrium by weak coupling with a “super-bath”. Our approach is a generalization of now standard typicality algorithms for computing the quantum expectation value of observables of bare quantum systems via trace estimators and Krylov subspace methods. In particular, our algorithm makes use of the fact that the reduced system density, when the bath is measured in a given random state, tends to concentrate about the corresponding thermodynamic averaged reduced system density. Theoretical error analysis and numerical experiments are given to validate the accuracy of our algorithm. Further numerical experiments demonstrate the potential of our approach for applications including the study of quantum phase transitions and entanglement entropy for long range interaction systems.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0099761</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Density ; Equilibrium ; Error analysis ; Numerical analysis ; Phase transitions ; Physics ; Subspace methods</subject><ispartof>The Journal of chemical physics, 2022-08, Vol.157 (6), p.64106-064106</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-b122eb063d9a847374020e9bcd1014a50df7be05fbd562f73256775d378b5df33</citedby><cites>FETCH-LOGICAL-c395t-b122eb063d9a847374020e9bcd1014a50df7be05fbd562f73256775d378b5df33</cites><orcidid>0000-0002-1187-1026</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0099761$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Chen, Tyler</creatorcontrib><creatorcontrib>Cheng, Yu-Chen</creatorcontrib><title>Numerical computation of the equilibrium-reduced density matrix for strongly coupled open quantum systems</title><title>The Journal of chemical physics</title><description>We describe a numerical algorithm for approximating the equilibrium-reduced density matrix and the effective (mean force) Hamiltonian for a set of system spins coupled strongly to a set of bath spins when the total system (system + bath) is held in canonical thermal equilibrium by weak coupling with a “super-bath”. Our approach is a generalization of now standard typicality algorithms for computing the quantum expectation value of observables of bare quantum systems via trace estimators and Krylov subspace methods. In particular, our algorithm makes use of the fact that the reduced system density, when the bath is measured in a given random state, tends to concentrate about the corresponding thermodynamic averaged reduced system density. Theoretical error analysis and numerical experiments are given to validate the accuracy of our algorithm. Further numerical experiments demonstrate the potential of our approach for applications including the study of quantum phase transitions and entanglement entropy for long range interaction systems.</description><subject>Algorithms</subject><subject>Density</subject><subject>Equilibrium</subject><subject>Error analysis</subject><subject>Numerical analysis</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Subspace methods</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90EtLxDAUBeAgCo6jC_9BwI0KHW_SpmmWIr5g0I2uS9qkmqFtOnmI_fd2mEFBwdXdfBzOPQidElgQyNMrtgAQgudkD80IFCLhuYB9NAOgJBE55IfoyPsVABBOsxkyT7HTztSyxbXthhhkMLbHtsHhXWO9jqY1lTOxS5xWsdYKK917E0bcyeDMJ26swz4427-14xQRh3YydtA9XkfZh9hhP_qgO3-MDhrZen2yu3P0enf7cvOQLJ_vH2-ul0mdChaSilCqq-kVJWSR8ZRnQEGLqlYESCYZqIZXGlhTKZbThqeU5ZwzlfKiYqpJ0zk63-YOzq6j9qHsjK9128pe2-hLyqcpCpJmxUTPftGVja6f2m0UEEqo2KiLraqd9d7pphyc6aQbSwLlZvSSlbvRJ3u5tb422ym_8Yd1P7Acpqr_4L_JXzF9kSQ</recordid><startdate>20220814</startdate><enddate>20220814</enddate><creator>Chen, Tyler</creator><creator>Cheng, Yu-Chen</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1187-1026</orcidid></search><sort><creationdate>20220814</creationdate><title>Numerical computation of the equilibrium-reduced density matrix for strongly coupled open quantum systems</title><author>Chen, Tyler ; Cheng, Yu-Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-b122eb063d9a847374020e9bcd1014a50df7be05fbd562f73256775d378b5df33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Density</topic><topic>Equilibrium</topic><topic>Error analysis</topic><topic>Numerical analysis</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Subspace methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Tyler</creatorcontrib><creatorcontrib>Cheng, Yu-Chen</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Tyler</au><au>Cheng, Yu-Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical computation of the equilibrium-reduced density matrix for strongly coupled open quantum systems</atitle><jtitle>The Journal of chemical physics</jtitle><date>2022-08-14</date><risdate>2022</risdate><volume>157</volume><issue>6</issue><spage>64106</spage><epage>064106</epage><pages>64106-064106</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We describe a numerical algorithm for approximating the equilibrium-reduced density matrix and the effective (mean force) Hamiltonian for a set of system spins coupled strongly to a set of bath spins when the total system (system + bath) is held in canonical thermal equilibrium by weak coupling with a “super-bath”. Our approach is a generalization of now standard typicality algorithms for computing the quantum expectation value of observables of bare quantum systems via trace estimators and Krylov subspace methods. In particular, our algorithm makes use of the fact that the reduced system density, when the bath is measured in a given random state, tends to concentrate about the corresponding thermodynamic averaged reduced system density. Theoretical error analysis and numerical experiments are given to validate the accuracy of our algorithm. Further numerical experiments demonstrate the potential of our approach for applications including the study of quantum phase transitions and entanglement entropy for long range interaction systems.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0099761</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1187-1026</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2022-08, Vol.157 (6), p.64106-064106 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_journals_2700121298 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Algorithms Density Equilibrium Error analysis Numerical analysis Phase transitions Physics Subspace methods |
title | Numerical computation of the equilibrium-reduced density matrix for strongly coupled open quantum systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A26%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20computation%20of%20the%20equilibrium-reduced%20density%20matrix%20for%20strongly%20coupled%20open%20quantum%20systems&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Chen,%20Tyler&rft.date=2022-08-14&rft.volume=157&rft.issue=6&rft.spage=64106&rft.epage=064106&rft.pages=64106-064106&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0099761&rft_dat=%3Cproquest_cross%3E2702181348%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700121298&rft_id=info:pmid/&rfr_iscdi=true |