Numerical computation of the equilibrium-reduced density matrix for strongly coupled open quantum systems

We describe a numerical algorithm for approximating the equilibrium-reduced density matrix and the effective (mean force) Hamiltonian for a set of system spins coupled strongly to a set of bath spins when the total system (system + bath) is held in canonical thermal equilibrium by weak coupling with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2022-08, Vol.157 (6), p.64106-064106
Hauptverfasser: Chen, Tyler, Cheng, Yu-Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 064106
container_issue 6
container_start_page 64106
container_title The Journal of chemical physics
container_volume 157
creator Chen, Tyler
Cheng, Yu-Chen
description We describe a numerical algorithm for approximating the equilibrium-reduced density matrix and the effective (mean force) Hamiltonian for a set of system spins coupled strongly to a set of bath spins when the total system (system + bath) is held in canonical thermal equilibrium by weak coupling with a “super-bath”. Our approach is a generalization of now standard typicality algorithms for computing the quantum expectation value of observables of bare quantum systems via trace estimators and Krylov subspace methods. In particular, our algorithm makes use of the fact that the reduced system density, when the bath is measured in a given random state, tends to concentrate about the corresponding thermodynamic averaged reduced system density. Theoretical error analysis and numerical experiments are given to validate the accuracy of our algorithm. Further numerical experiments demonstrate the potential of our approach for applications including the study of quantum phase transitions and entanglement entropy for long range interaction systems.
doi_str_mv 10.1063/5.0099761
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2700121298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2702181348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-b122eb063d9a847374020e9bcd1014a50df7be05fbd562f73256775d378b5df33</originalsourceid><addsrcrecordid>eNp90EtLxDAUBeAgCo6jC_9BwI0KHW_SpmmWIr5g0I2uS9qkmqFtOnmI_fd2mEFBwdXdfBzOPQidElgQyNMrtgAQgudkD80IFCLhuYB9NAOgJBE55IfoyPsVABBOsxkyT7HTztSyxbXthhhkMLbHtsHhXWO9jqY1lTOxS5xWsdYKK917E0bcyeDMJ26swz4427-14xQRh3YydtA9XkfZh9hhP_qgO3-MDhrZen2yu3P0enf7cvOQLJ_vH2-ul0mdChaSilCqq-kVJWSR8ZRnQEGLqlYESCYZqIZXGlhTKZbThqeU5ZwzlfKiYqpJ0zk63-YOzq6j9qHsjK9128pe2-hLyqcpCpJmxUTPftGVja6f2m0UEEqo2KiLraqd9d7pphyc6aQbSwLlZvSSlbvRJ3u5tb422ym_8Yd1P7Acpqr_4L_JXzF9kSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700121298</pqid></control><display><type>article</type><title>Numerical computation of the equilibrium-reduced density matrix for strongly coupled open quantum systems</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Chen, Tyler ; Cheng, Yu-Chen</creator><creatorcontrib>Chen, Tyler ; Cheng, Yu-Chen</creatorcontrib><description>We describe a numerical algorithm for approximating the equilibrium-reduced density matrix and the effective (mean force) Hamiltonian for a set of system spins coupled strongly to a set of bath spins when the total system (system + bath) is held in canonical thermal equilibrium by weak coupling with a “super-bath”. Our approach is a generalization of now standard typicality algorithms for computing the quantum expectation value of observables of bare quantum systems via trace estimators and Krylov subspace methods. In particular, our algorithm makes use of the fact that the reduced system density, when the bath is measured in a given random state, tends to concentrate about the corresponding thermodynamic averaged reduced system density. Theoretical error analysis and numerical experiments are given to validate the accuracy of our algorithm. Further numerical experiments demonstrate the potential of our approach for applications including the study of quantum phase transitions and entanglement entropy for long range interaction systems.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0099761</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Density ; Equilibrium ; Error analysis ; Numerical analysis ; Phase transitions ; Physics ; Subspace methods</subject><ispartof>The Journal of chemical physics, 2022-08, Vol.157 (6), p.64106-064106</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-b122eb063d9a847374020e9bcd1014a50df7be05fbd562f73256775d378b5df33</citedby><cites>FETCH-LOGICAL-c395t-b122eb063d9a847374020e9bcd1014a50df7be05fbd562f73256775d378b5df33</cites><orcidid>0000-0002-1187-1026</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0099761$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Chen, Tyler</creatorcontrib><creatorcontrib>Cheng, Yu-Chen</creatorcontrib><title>Numerical computation of the equilibrium-reduced density matrix for strongly coupled open quantum systems</title><title>The Journal of chemical physics</title><description>We describe a numerical algorithm for approximating the equilibrium-reduced density matrix and the effective (mean force) Hamiltonian for a set of system spins coupled strongly to a set of bath spins when the total system (system + bath) is held in canonical thermal equilibrium by weak coupling with a “super-bath”. Our approach is a generalization of now standard typicality algorithms for computing the quantum expectation value of observables of bare quantum systems via trace estimators and Krylov subspace methods. In particular, our algorithm makes use of the fact that the reduced system density, when the bath is measured in a given random state, tends to concentrate about the corresponding thermodynamic averaged reduced system density. Theoretical error analysis and numerical experiments are given to validate the accuracy of our algorithm. Further numerical experiments demonstrate the potential of our approach for applications including the study of quantum phase transitions and entanglement entropy for long range interaction systems.</description><subject>Algorithms</subject><subject>Density</subject><subject>Equilibrium</subject><subject>Error analysis</subject><subject>Numerical analysis</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Subspace methods</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90EtLxDAUBeAgCo6jC_9BwI0KHW_SpmmWIr5g0I2uS9qkmqFtOnmI_fd2mEFBwdXdfBzOPQidElgQyNMrtgAQgudkD80IFCLhuYB9NAOgJBE55IfoyPsVABBOsxkyT7HTztSyxbXthhhkMLbHtsHhXWO9jqY1lTOxS5xWsdYKK917E0bcyeDMJ26swz4427-14xQRh3YydtA9XkfZh9hhP_qgO3-MDhrZen2yu3P0enf7cvOQLJ_vH2-ul0mdChaSilCqq-kVJWSR8ZRnQEGLqlYESCYZqIZXGlhTKZbThqeU5ZwzlfKiYqpJ0zk63-YOzq6j9qHsjK9128pe2-hLyqcpCpJmxUTPftGVja6f2m0UEEqo2KiLraqd9d7pphyc6aQbSwLlZvSSlbvRJ3u5tb422ym_8Yd1P7Acpqr_4L_JXzF9kSQ</recordid><startdate>20220814</startdate><enddate>20220814</enddate><creator>Chen, Tyler</creator><creator>Cheng, Yu-Chen</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1187-1026</orcidid></search><sort><creationdate>20220814</creationdate><title>Numerical computation of the equilibrium-reduced density matrix for strongly coupled open quantum systems</title><author>Chen, Tyler ; Cheng, Yu-Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-b122eb063d9a847374020e9bcd1014a50df7be05fbd562f73256775d378b5df33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Density</topic><topic>Equilibrium</topic><topic>Error analysis</topic><topic>Numerical analysis</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Subspace methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Tyler</creatorcontrib><creatorcontrib>Cheng, Yu-Chen</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Tyler</au><au>Cheng, Yu-Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical computation of the equilibrium-reduced density matrix for strongly coupled open quantum systems</atitle><jtitle>The Journal of chemical physics</jtitle><date>2022-08-14</date><risdate>2022</risdate><volume>157</volume><issue>6</issue><spage>64106</spage><epage>064106</epage><pages>64106-064106</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We describe a numerical algorithm for approximating the equilibrium-reduced density matrix and the effective (mean force) Hamiltonian for a set of system spins coupled strongly to a set of bath spins when the total system (system + bath) is held in canonical thermal equilibrium by weak coupling with a “super-bath”. Our approach is a generalization of now standard typicality algorithms for computing the quantum expectation value of observables of bare quantum systems via trace estimators and Krylov subspace methods. In particular, our algorithm makes use of the fact that the reduced system density, when the bath is measured in a given random state, tends to concentrate about the corresponding thermodynamic averaged reduced system density. Theoretical error analysis and numerical experiments are given to validate the accuracy of our algorithm. Further numerical experiments demonstrate the potential of our approach for applications including the study of quantum phase transitions and entanglement entropy for long range interaction systems.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0099761</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1187-1026</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2022-08, Vol.157 (6), p.64106-064106
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_journals_2700121298
source AIP Journals Complete; Alma/SFX Local Collection
subjects Algorithms
Density
Equilibrium
Error analysis
Numerical analysis
Phase transitions
Physics
Subspace methods
title Numerical computation of the equilibrium-reduced density matrix for strongly coupled open quantum systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A26%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20computation%20of%20the%20equilibrium-reduced%20density%20matrix%20for%20strongly%20coupled%20open%20quantum%20systems&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Chen,%20Tyler&rft.date=2022-08-14&rft.volume=157&rft.issue=6&rft.spage=64106&rft.epage=064106&rft.pages=64106-064106&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0099761&rft_dat=%3Cproquest_cross%3E2702181348%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700121298&rft_id=info:pmid/&rfr_iscdi=true