Investigating the effect of varying block size on power and energy consumption of GPU kernels

Power consumption is likely to remain a significant concern for exascale performance in the foreseeable future. In addition, graphics processing units (GPUs) have become an accepted architectural feature for exascale computing due to their scalable performance and power efficiency. In a recent study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2022-09, Vol.78 (13), p.14919-14939
Hauptverfasser: Ikram, Muhammad Jawad, Saleh, Mostafa Elsayed, Al-Hashimi, Muhammad Abdulhamid, Abulnaja, Osama Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14939
container_issue 13
container_start_page 14919
container_title The Journal of supercomputing
container_volume 78
creator Ikram, Muhammad Jawad
Saleh, Mostafa Elsayed
Al-Hashimi, Muhammad Abdulhamid
Abulnaja, Osama Ahmed
description Power consumption is likely to remain a significant concern for exascale performance in the foreseeable future. In addition, graphics processing units (GPUs) have become an accepted architectural feature for exascale computing due to their scalable performance and power efficiency. In a recent study, we found that we can achieve a reasonable amount of power and energy savings based on the selection of algorithms. In this research, we suggest that we can save more power and energy by varying the block size in the kernel configuration . We show that we may attain more savings by selecting the optimum block size while executing the workload. We investigated two kernels on NVIDIA Tesla K40 GPU, a Bitonic Mergesort and Vector Addition kernels, to study the effect of varying block sizes on GPU power and energy consumption. The study should offer insights for upcoming exascale systems in terms of power and energy efficiency.
doi_str_mv 10.1007/s11227-022-04473-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2699983067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2699983067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-8aff48a8711de75696dadf489180fea1ea9336241d7a292b00838b89d9ec86b3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLEOeBXY_uIKiiVKsGhHJHlJJuQPuxgp0Xl63EJEjdOu5qdmdUMQteU3FJC5F2klDGZEcYyIoTkmT5BIzpJCxFKnKIR0YxkaiLYObqIcUUIEVzyEXqbuz3Evm1s37oG9--Aoa6h7LGv8d6GwxEtNr5c49h-AfYOd_4TArauwuAgNAdcehd3265v0zGpZi-veA3BwSZeorPabiJc_c4xWj4-LKdP2eJ5Np_eL7KS57zPlK1roaySlFYgJ7nOK1slRFNFarAUrOY8Z4JW0jLNCkIUV4XSlYZS5QUfo5vBtgv-Y5fimJXfBZc-GpZrrRUnuUwsNrDK4GMMUJsutNsU0VBiji2aoUWTWjQ_LRqdRHwQxUR2DYQ_639U33_hdV8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2699983067</pqid></control><display><type>article</type><title>Investigating the effect of varying block size on power and energy consumption of GPU kernels</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ikram, Muhammad Jawad ; Saleh, Mostafa Elsayed ; Al-Hashimi, Muhammad Abdulhamid ; Abulnaja, Osama Ahmed</creator><creatorcontrib>Ikram, Muhammad Jawad ; Saleh, Mostafa Elsayed ; Al-Hashimi, Muhammad Abdulhamid ; Abulnaja, Osama Ahmed</creatorcontrib><description>Power consumption is likely to remain a significant concern for exascale performance in the foreseeable future. In addition, graphics processing units (GPUs) have become an accepted architectural feature for exascale computing due to their scalable performance and power efficiency. In a recent study, we found that we can achieve a reasonable amount of power and energy savings based on the selection of algorithms. In this research, we suggest that we can save more power and energy by varying the block size in the kernel configuration . We show that we may attain more savings by selecting the optimum block size while executing the workload. We investigated two kernels on NVIDIA Tesla K40 GPU, a Bitonic Mergesort and Vector Addition kernels, to study the effect of varying block sizes on GPU power and energy consumption. The study should offer insights for upcoming exascale systems in terms of power and energy efficiency.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-022-04473-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Compilers ; Computer Science ; Energy consumption ; Graphics processing units ; Interpreters ; Kernels ; Power consumption ; Power efficiency ; Processor Architectures ; Programming Languages</subject><ispartof>The Journal of supercomputing, 2022-09, Vol.78 (13), p.14919-14939</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-8aff48a8711de75696dadf489180fea1ea9336241d7a292b00838b89d9ec86b3</citedby><cites>FETCH-LOGICAL-c363t-8aff48a8711de75696dadf489180fea1ea9336241d7a292b00838b89d9ec86b3</cites><orcidid>0000-0001-9340-9777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-022-04473-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-022-04473-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ikram, Muhammad Jawad</creatorcontrib><creatorcontrib>Saleh, Mostafa Elsayed</creatorcontrib><creatorcontrib>Al-Hashimi, Muhammad Abdulhamid</creatorcontrib><creatorcontrib>Abulnaja, Osama Ahmed</creatorcontrib><title>Investigating the effect of varying block size on power and energy consumption of GPU kernels</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>Power consumption is likely to remain a significant concern for exascale performance in the foreseeable future. In addition, graphics processing units (GPUs) have become an accepted architectural feature for exascale computing due to their scalable performance and power efficiency. In a recent study, we found that we can achieve a reasonable amount of power and energy savings based on the selection of algorithms. In this research, we suggest that we can save more power and energy by varying the block size in the kernel configuration . We show that we may attain more savings by selecting the optimum block size while executing the workload. We investigated two kernels on NVIDIA Tesla K40 GPU, a Bitonic Mergesort and Vector Addition kernels, to study the effect of varying block sizes on GPU power and energy consumption. The study should offer insights for upcoming exascale systems in terms of power and energy efficiency.</description><subject>Algorithms</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Energy consumption</subject><subject>Graphics processing units</subject><subject>Interpreters</subject><subject>Kernels</subject><subject>Power consumption</subject><subject>Power efficiency</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UMtOwzAQtBBIlMIPcLLEOeBXY_uIKiiVKsGhHJHlJJuQPuxgp0Xl63EJEjdOu5qdmdUMQteU3FJC5F2klDGZEcYyIoTkmT5BIzpJCxFKnKIR0YxkaiLYObqIcUUIEVzyEXqbuz3Evm1s37oG9--Aoa6h7LGv8d6GwxEtNr5c49h-AfYOd_4TArauwuAgNAdcehd3265v0zGpZi-veA3BwSZeorPabiJc_c4xWj4-LKdP2eJ5Np_eL7KS57zPlK1roaySlFYgJ7nOK1slRFNFarAUrOY8Z4JW0jLNCkIUV4XSlYZS5QUfo5vBtgv-Y5fimJXfBZc-GpZrrRUnuUwsNrDK4GMMUJsutNsU0VBiji2aoUWTWjQ_LRqdRHwQxUR2DYQ_639U33_hdV8</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Ikram, Muhammad Jawad</creator><creator>Saleh, Mostafa Elsayed</creator><creator>Al-Hashimi, Muhammad Abdulhamid</creator><creator>Abulnaja, Osama Ahmed</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9340-9777</orcidid></search><sort><creationdate>20220901</creationdate><title>Investigating the effect of varying block size on power and energy consumption of GPU kernels</title><author>Ikram, Muhammad Jawad ; Saleh, Mostafa Elsayed ; Al-Hashimi, Muhammad Abdulhamid ; Abulnaja, Osama Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-8aff48a8711de75696dadf489180fea1ea9336241d7a292b00838b89d9ec86b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Energy consumption</topic><topic>Graphics processing units</topic><topic>Interpreters</topic><topic>Kernels</topic><topic>Power consumption</topic><topic>Power efficiency</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikram, Muhammad Jawad</creatorcontrib><creatorcontrib>Saleh, Mostafa Elsayed</creatorcontrib><creatorcontrib>Al-Hashimi, Muhammad Abdulhamid</creatorcontrib><creatorcontrib>Abulnaja, Osama Ahmed</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikram, Muhammad Jawad</au><au>Saleh, Mostafa Elsayed</au><au>Al-Hashimi, Muhammad Abdulhamid</au><au>Abulnaja, Osama Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating the effect of varying block size on power and energy consumption of GPU kernels</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>78</volume><issue>13</issue><spage>14919</spage><epage>14939</epage><pages>14919-14939</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Power consumption is likely to remain a significant concern for exascale performance in the foreseeable future. In addition, graphics processing units (GPUs) have become an accepted architectural feature for exascale computing due to their scalable performance and power efficiency. In a recent study, we found that we can achieve a reasonable amount of power and energy savings based on the selection of algorithms. In this research, we suggest that we can save more power and energy by varying the block size in the kernel configuration . We show that we may attain more savings by selecting the optimum block size while executing the workload. We investigated two kernels on NVIDIA Tesla K40 GPU, a Bitonic Mergesort and Vector Addition kernels, to study the effect of varying block sizes on GPU power and energy consumption. The study should offer insights for upcoming exascale systems in terms of power and energy efficiency.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-022-04473-9</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-9340-9777</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2022-09, Vol.78 (13), p.14919-14939
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_2699983067
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Compilers
Computer Science
Energy consumption
Graphics processing units
Interpreters
Kernels
Power consumption
Power efficiency
Processor Architectures
Programming Languages
title Investigating the effect of varying block size on power and energy consumption of GPU kernels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A38%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20the%20effect%20of%20varying%20block%20size%20on%20power%20and%20energy%20consumption%20of%20GPU%20kernels&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Ikram,%20Muhammad%20Jawad&rft.date=2022-09-01&rft.volume=78&rft.issue=13&rft.spage=14919&rft.epage=14939&rft.pages=14919-14939&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-022-04473-9&rft_dat=%3Cproquest_cross%3E2699983067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2699983067&rft_id=info:pmid/&rfr_iscdi=true