Carbon Dioxide Valorization via Formate Electrosynthesis in a Wide Potential Window

The electrochemical CO2 reduction reaction (CO2RR) is a promising strategy to convert CO2 to carbon‐based fuels and to simultaneously reduce the emission of greenhouse gases into the atmosphere. In this work, the bismuth subcarbonate nanoflowers (BOC NFs) are facilely prepared through a one‐pot synt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2022-08, Vol.32 (32), p.n/a
Hauptverfasser: Sui, Peng‐Fei, Gao, Min‐Rui, Liu, Subiao, Xu, Chenyu, Zhu, Meng‐Nan, Luo, Jing‐Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 32
container_start_page
container_title Advanced functional materials
container_volume 32
creator Sui, Peng‐Fei
Gao, Min‐Rui
Liu, Subiao
Xu, Chenyu
Zhu, Meng‐Nan
Luo, Jing‐Li
description The electrochemical CO2 reduction reaction (CO2RR) is a promising strategy to convert CO2 to carbon‐based fuels and to simultaneously reduce the emission of greenhouse gases into the atmosphere. In this work, the bismuth subcarbonate nanoflowers (BOC NFs) are facilely prepared through a one‐pot synthesis method for efficient formate electrosynthesis through CO2RR. Benefiting from the crystal structure and sheet‐stacked morphology, the in situ measurements and theoretical calculation results reveal the self‐reinforced CO2 adsorption properties and rapid CO2 adsorption–desorption kinetics on the catalyst surface, which significantly facilitate the CO2RR process. As a result, the desirable Faradaic efficiencies of over 90%, with a maximum value of 98.9%, toward formate formation, are achieved in a wide potential window from −0.8 to −1.4 V in an H‐type cell. Moreover, in a flow cell, the superior intrinsic activity of BOC NFs guarantees the high throughput electrocatalytic performance of CO2RR and the FEformate of over 90% with high current density is achieved in a potential range as wide as 1200 mV, demonstrating the great potential of BOC NFs for practical CO2RR applications. These results underscore the effectiveness of designing electrocatalysts with self‐reinforced CO2 adsorption properties to improve electrocatalytic performance for efficient CO2RR. The bismuth subcarbonate nanoflowers demonstrate highly selective formation of formate in CO2 electroreduction. The self‐contained carbonate species within the electrocatalyst provide the unique reinforced CO2 adsorption properties and fast CO2 adsorption–desorption kinetics, which results in the high formate Faradic efficiencies in a wide potential window.
doi_str_mv 10.1002/adfm.202203794
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2699836173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2699836173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2474-537c86fa22ac749537d5d4bdbc5c6263da650fc1970237bff50e8ff652fea5d23</originalsourceid><addsrcrecordid>eNqFkMtLAzEQxoMoWKtXzwHPW_PYJLvH0pdCRcHnLWTzwJTtpiZba_3r3VKpR08z3_D9ZoYPgEuMBhghcq2MWw4IIgRRUeZHoIc55hlFpDg-9PjtFJyltEAIC0HzHngcqViFBo59-PLGwhdVh-i_Veu74adXcBriUrUWTmqr2xjStmnfbfIJ-gYq-LpjHkJrm9arupONCZtzcOJUnezFb-2D5-nkaXSTze9nt6PhPNMkF3nGqNAFd4oQpUVedtIwk1em0kxzwqlRnCGncSkQoaJyjiFbOMcZcVYxQ2gfXO33rmL4WNvUykVYx6Y7KQkvy4JyLGjnGuxduvs-RevkKvqliluJkdwFJ3fByUNwHVDugY2v7fYftxyOp3d_7A9hDnJu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2699836173</pqid></control><display><type>article</type><title>Carbon Dioxide Valorization via Formate Electrosynthesis in a Wide Potential Window</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Sui, Peng‐Fei ; Gao, Min‐Rui ; Liu, Subiao ; Xu, Chenyu ; Zhu, Meng‐Nan ; Luo, Jing‐Li</creator><creatorcontrib>Sui, Peng‐Fei ; Gao, Min‐Rui ; Liu, Subiao ; Xu, Chenyu ; Zhu, Meng‐Nan ; Luo, Jing‐Li</creatorcontrib><description>The electrochemical CO2 reduction reaction (CO2RR) is a promising strategy to convert CO2 to carbon‐based fuels and to simultaneously reduce the emission of greenhouse gases into the atmosphere. In this work, the bismuth subcarbonate nanoflowers (BOC NFs) are facilely prepared through a one‐pot synthesis method for efficient formate electrosynthesis through CO2RR. Benefiting from the crystal structure and sheet‐stacked morphology, the in situ measurements and theoretical calculation results reveal the self‐reinforced CO2 adsorption properties and rapid CO2 adsorption–desorption kinetics on the catalyst surface, which significantly facilitate the CO2RR process. As a result, the desirable Faradaic efficiencies of over 90%, with a maximum value of 98.9%, toward formate formation, are achieved in a wide potential window from −0.8 to −1.4 V in an H‐type cell. Moreover, in a flow cell, the superior intrinsic activity of BOC NFs guarantees the high throughput electrocatalytic performance of CO2RR and the FEformate of over 90% with high current density is achieved in a potential range as wide as 1200 mV, demonstrating the great potential of BOC NFs for practical CO2RR applications. These results underscore the effectiveness of designing electrocatalysts with self‐reinforced CO2 adsorption properties to improve electrocatalytic performance for efficient CO2RR. The bismuth subcarbonate nanoflowers demonstrate highly selective formation of formate in CO2 electroreduction. The self‐contained carbonate species within the electrocatalyst provide the unique reinforced CO2 adsorption properties and fast CO2 adsorption–desorption kinetics, which results in the high formate Faradic efficiencies in a wide potential window.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202203794</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Bismuth ; Carbon dioxide ; Chemical reduction ; CO 2 adsorption ; Crystal structure ; electrocatalysis ; Electrocatalysts ; electrochemical CO 2 reduction ; Emissions control ; formate ; Greenhouse gases ; In situ measurement ; Materials science ; Reaction kinetics</subject><ispartof>Advanced functional materials, 2022-08, Vol.32 (32), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2474-537c86fa22ac749537d5d4bdbc5c6263da650fc1970237bff50e8ff652fea5d23</citedby><cites>FETCH-LOGICAL-c2474-537c86fa22ac749537d5d4bdbc5c6263da650fc1970237bff50e8ff652fea5d23</cites><orcidid>0000-0001-5153-6516 ; 0000-0002-2465-7280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202203794$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202203794$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Sui, Peng‐Fei</creatorcontrib><creatorcontrib>Gao, Min‐Rui</creatorcontrib><creatorcontrib>Liu, Subiao</creatorcontrib><creatorcontrib>Xu, Chenyu</creatorcontrib><creatorcontrib>Zhu, Meng‐Nan</creatorcontrib><creatorcontrib>Luo, Jing‐Li</creatorcontrib><title>Carbon Dioxide Valorization via Formate Electrosynthesis in a Wide Potential Window</title><title>Advanced functional materials</title><description>The electrochemical CO2 reduction reaction (CO2RR) is a promising strategy to convert CO2 to carbon‐based fuels and to simultaneously reduce the emission of greenhouse gases into the atmosphere. In this work, the bismuth subcarbonate nanoflowers (BOC NFs) are facilely prepared through a one‐pot synthesis method for efficient formate electrosynthesis through CO2RR. Benefiting from the crystal structure and sheet‐stacked morphology, the in situ measurements and theoretical calculation results reveal the self‐reinforced CO2 adsorption properties and rapid CO2 adsorption–desorption kinetics on the catalyst surface, which significantly facilitate the CO2RR process. As a result, the desirable Faradaic efficiencies of over 90%, with a maximum value of 98.9%, toward formate formation, are achieved in a wide potential window from −0.8 to −1.4 V in an H‐type cell. Moreover, in a flow cell, the superior intrinsic activity of BOC NFs guarantees the high throughput electrocatalytic performance of CO2RR and the FEformate of over 90% with high current density is achieved in a potential range as wide as 1200 mV, demonstrating the great potential of BOC NFs for practical CO2RR applications. These results underscore the effectiveness of designing electrocatalysts with self‐reinforced CO2 adsorption properties to improve electrocatalytic performance for efficient CO2RR. The bismuth subcarbonate nanoflowers demonstrate highly selective formation of formate in CO2 electroreduction. The self‐contained carbonate species within the electrocatalyst provide the unique reinforced CO2 adsorption properties and fast CO2 adsorption–desorption kinetics, which results in the high formate Faradic efficiencies in a wide potential window.</description><subject>Adsorption</subject><subject>Bismuth</subject><subject>Carbon dioxide</subject><subject>Chemical reduction</subject><subject>CO 2 adsorption</subject><subject>Crystal structure</subject><subject>electrocatalysis</subject><subject>Electrocatalysts</subject><subject>electrochemical CO 2 reduction</subject><subject>Emissions control</subject><subject>formate</subject><subject>Greenhouse gases</subject><subject>In situ measurement</subject><subject>Materials science</subject><subject>Reaction kinetics</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMtLAzEQxoMoWKtXzwHPW_PYJLvH0pdCRcHnLWTzwJTtpiZba_3r3VKpR08z3_D9ZoYPgEuMBhghcq2MWw4IIgRRUeZHoIc55hlFpDg-9PjtFJyltEAIC0HzHngcqViFBo59-PLGwhdVh-i_Veu74adXcBriUrUWTmqr2xjStmnfbfIJ-gYq-LpjHkJrm9arupONCZtzcOJUnezFb-2D5-nkaXSTze9nt6PhPNMkF3nGqNAFd4oQpUVedtIwk1em0kxzwqlRnCGncSkQoaJyjiFbOMcZcVYxQ2gfXO33rmL4WNvUykVYx6Y7KQkvy4JyLGjnGuxduvs-RevkKvqliluJkdwFJ3fByUNwHVDugY2v7fYftxyOp3d_7A9hDnJu</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Sui, Peng‐Fei</creator><creator>Gao, Min‐Rui</creator><creator>Liu, Subiao</creator><creator>Xu, Chenyu</creator><creator>Zhu, Meng‐Nan</creator><creator>Luo, Jing‐Li</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5153-6516</orcidid><orcidid>https://orcid.org/0000-0002-2465-7280</orcidid></search><sort><creationdate>20220801</creationdate><title>Carbon Dioxide Valorization via Formate Electrosynthesis in a Wide Potential Window</title><author>Sui, Peng‐Fei ; Gao, Min‐Rui ; Liu, Subiao ; Xu, Chenyu ; Zhu, Meng‐Nan ; Luo, Jing‐Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2474-537c86fa22ac749537d5d4bdbc5c6263da650fc1970237bff50e8ff652fea5d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorption</topic><topic>Bismuth</topic><topic>Carbon dioxide</topic><topic>Chemical reduction</topic><topic>CO 2 adsorption</topic><topic>Crystal structure</topic><topic>electrocatalysis</topic><topic>Electrocatalysts</topic><topic>electrochemical CO 2 reduction</topic><topic>Emissions control</topic><topic>formate</topic><topic>Greenhouse gases</topic><topic>In situ measurement</topic><topic>Materials science</topic><topic>Reaction kinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sui, Peng‐Fei</creatorcontrib><creatorcontrib>Gao, Min‐Rui</creatorcontrib><creatorcontrib>Liu, Subiao</creatorcontrib><creatorcontrib>Xu, Chenyu</creatorcontrib><creatorcontrib>Zhu, Meng‐Nan</creatorcontrib><creatorcontrib>Luo, Jing‐Li</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sui, Peng‐Fei</au><au>Gao, Min‐Rui</au><au>Liu, Subiao</au><au>Xu, Chenyu</au><au>Zhu, Meng‐Nan</au><au>Luo, Jing‐Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Dioxide Valorization via Formate Electrosynthesis in a Wide Potential Window</atitle><jtitle>Advanced functional materials</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>32</volume><issue>32</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The electrochemical CO2 reduction reaction (CO2RR) is a promising strategy to convert CO2 to carbon‐based fuels and to simultaneously reduce the emission of greenhouse gases into the atmosphere. In this work, the bismuth subcarbonate nanoflowers (BOC NFs) are facilely prepared through a one‐pot synthesis method for efficient formate electrosynthesis through CO2RR. Benefiting from the crystal structure and sheet‐stacked morphology, the in situ measurements and theoretical calculation results reveal the self‐reinforced CO2 adsorption properties and rapid CO2 adsorption–desorption kinetics on the catalyst surface, which significantly facilitate the CO2RR process. As a result, the desirable Faradaic efficiencies of over 90%, with a maximum value of 98.9%, toward formate formation, are achieved in a wide potential window from −0.8 to −1.4 V in an H‐type cell. Moreover, in a flow cell, the superior intrinsic activity of BOC NFs guarantees the high throughput electrocatalytic performance of CO2RR and the FEformate of over 90% with high current density is achieved in a potential range as wide as 1200 mV, demonstrating the great potential of BOC NFs for practical CO2RR applications. These results underscore the effectiveness of designing electrocatalysts with self‐reinforced CO2 adsorption properties to improve electrocatalytic performance for efficient CO2RR. The bismuth subcarbonate nanoflowers demonstrate highly selective formation of formate in CO2 electroreduction. The self‐contained carbonate species within the electrocatalyst provide the unique reinforced CO2 adsorption properties and fast CO2 adsorption–desorption kinetics, which results in the high formate Faradic efficiencies in a wide potential window.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202203794</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5153-6516</orcidid><orcidid>https://orcid.org/0000-0002-2465-7280</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2022-08, Vol.32 (32), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2699836173
source Wiley Online Library - AutoHoldings Journals
subjects Adsorption
Bismuth
Carbon dioxide
Chemical reduction
CO 2 adsorption
Crystal structure
electrocatalysis
Electrocatalysts
electrochemical CO 2 reduction
Emissions control
formate
Greenhouse gases
In situ measurement
Materials science
Reaction kinetics
title Carbon Dioxide Valorization via Formate Electrosynthesis in a Wide Potential Window
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Dioxide%20Valorization%20via%20Formate%20Electrosynthesis%20in%20a%20Wide%20Potential%20Window&rft.jtitle=Advanced%20functional%20materials&rft.au=Sui,%20Peng%E2%80%90Fei&rft.date=2022-08-01&rft.volume=32&rft.issue=32&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202203794&rft_dat=%3Cproquest_cross%3E2699836173%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2699836173&rft_id=info:pmid/&rfr_iscdi=true