Carbon Dioxide Valorization via Formate Electrosynthesis in a Wide Potential Window
The electrochemical CO2 reduction reaction (CO2RR) is a promising strategy to convert CO2 to carbon‐based fuels and to simultaneously reduce the emission of greenhouse gases into the atmosphere. In this work, the bismuth subcarbonate nanoflowers (BOC NFs) are facilely prepared through a one‐pot synt...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2022-08, Vol.32 (32), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 32 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 32 |
creator | Sui, Peng‐Fei Gao, Min‐Rui Liu, Subiao Xu, Chenyu Zhu, Meng‐Nan Luo, Jing‐Li |
description | The electrochemical CO2 reduction reaction (CO2RR) is a promising strategy to convert CO2 to carbon‐based fuels and to simultaneously reduce the emission of greenhouse gases into the atmosphere. In this work, the bismuth subcarbonate nanoflowers (BOC NFs) are facilely prepared through a one‐pot synthesis method for efficient formate electrosynthesis through CO2RR. Benefiting from the crystal structure and sheet‐stacked morphology, the in situ measurements and theoretical calculation results reveal the self‐reinforced CO2 adsorption properties and rapid CO2 adsorption–desorption kinetics on the catalyst surface, which significantly facilitate the CO2RR process. As a result, the desirable Faradaic efficiencies of over 90%, with a maximum value of 98.9%, toward formate formation, are achieved in a wide potential window from −0.8 to −1.4 V in an H‐type cell. Moreover, in a flow cell, the superior intrinsic activity of BOC NFs guarantees the high throughput electrocatalytic performance of CO2RR and the FEformate of over 90% with high current density is achieved in a potential range as wide as 1200 mV, demonstrating the great potential of BOC NFs for practical CO2RR applications. These results underscore the effectiveness of designing electrocatalysts with self‐reinforced CO2 adsorption properties to improve electrocatalytic performance for efficient CO2RR.
The bismuth subcarbonate nanoflowers demonstrate highly selective formation of formate in CO2 electroreduction. The self‐contained carbonate species within the electrocatalyst provide the unique reinforced CO2 adsorption properties and fast CO2 adsorption–desorption kinetics, which results in the high formate Faradic efficiencies in a wide potential window. |
doi_str_mv | 10.1002/adfm.202203794 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2699836173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2699836173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2474-537c86fa22ac749537d5d4bdbc5c6263da650fc1970237bff50e8ff652fea5d23</originalsourceid><addsrcrecordid>eNqFkMtLAzEQxoMoWKtXzwHPW_PYJLvH0pdCRcHnLWTzwJTtpiZba_3r3VKpR08z3_D9ZoYPgEuMBhghcq2MWw4IIgRRUeZHoIc55hlFpDg-9PjtFJyltEAIC0HzHngcqViFBo59-PLGwhdVh-i_Veu74adXcBriUrUWTmqr2xjStmnfbfIJ-gYq-LpjHkJrm9arupONCZtzcOJUnezFb-2D5-nkaXSTze9nt6PhPNMkF3nGqNAFd4oQpUVedtIwk1em0kxzwqlRnCGncSkQoaJyjiFbOMcZcVYxQ2gfXO33rmL4WNvUykVYx6Y7KQkvy4JyLGjnGuxduvs-RevkKvqliluJkdwFJ3fByUNwHVDugY2v7fYftxyOp3d_7A9hDnJu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2699836173</pqid></control><display><type>article</type><title>Carbon Dioxide Valorization via Formate Electrosynthesis in a Wide Potential Window</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Sui, Peng‐Fei ; Gao, Min‐Rui ; Liu, Subiao ; Xu, Chenyu ; Zhu, Meng‐Nan ; Luo, Jing‐Li</creator><creatorcontrib>Sui, Peng‐Fei ; Gao, Min‐Rui ; Liu, Subiao ; Xu, Chenyu ; Zhu, Meng‐Nan ; Luo, Jing‐Li</creatorcontrib><description>The electrochemical CO2 reduction reaction (CO2RR) is a promising strategy to convert CO2 to carbon‐based fuels and to simultaneously reduce the emission of greenhouse gases into the atmosphere. In this work, the bismuth subcarbonate nanoflowers (BOC NFs) are facilely prepared through a one‐pot synthesis method for efficient formate electrosynthesis through CO2RR. Benefiting from the crystal structure and sheet‐stacked morphology, the in situ measurements and theoretical calculation results reveal the self‐reinforced CO2 adsorption properties and rapid CO2 adsorption–desorption kinetics on the catalyst surface, which significantly facilitate the CO2RR process. As a result, the desirable Faradaic efficiencies of over 90%, with a maximum value of 98.9%, toward formate formation, are achieved in a wide potential window from −0.8 to −1.4 V in an H‐type cell. Moreover, in a flow cell, the superior intrinsic activity of BOC NFs guarantees the high throughput electrocatalytic performance of CO2RR and the FEformate of over 90% with high current density is achieved in a potential range as wide as 1200 mV, demonstrating the great potential of BOC NFs for practical CO2RR applications. These results underscore the effectiveness of designing electrocatalysts with self‐reinforced CO2 adsorption properties to improve electrocatalytic performance for efficient CO2RR.
The bismuth subcarbonate nanoflowers demonstrate highly selective formation of formate in CO2 electroreduction. The self‐contained carbonate species within the electrocatalyst provide the unique reinforced CO2 adsorption properties and fast CO2 adsorption–desorption kinetics, which results in the high formate Faradic efficiencies in a wide potential window.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202203794</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Bismuth ; Carbon dioxide ; Chemical reduction ; CO 2 adsorption ; Crystal structure ; electrocatalysis ; Electrocatalysts ; electrochemical CO 2 reduction ; Emissions control ; formate ; Greenhouse gases ; In situ measurement ; Materials science ; Reaction kinetics</subject><ispartof>Advanced functional materials, 2022-08, Vol.32 (32), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2474-537c86fa22ac749537d5d4bdbc5c6263da650fc1970237bff50e8ff652fea5d23</citedby><cites>FETCH-LOGICAL-c2474-537c86fa22ac749537d5d4bdbc5c6263da650fc1970237bff50e8ff652fea5d23</cites><orcidid>0000-0001-5153-6516 ; 0000-0002-2465-7280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202203794$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202203794$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Sui, Peng‐Fei</creatorcontrib><creatorcontrib>Gao, Min‐Rui</creatorcontrib><creatorcontrib>Liu, Subiao</creatorcontrib><creatorcontrib>Xu, Chenyu</creatorcontrib><creatorcontrib>Zhu, Meng‐Nan</creatorcontrib><creatorcontrib>Luo, Jing‐Li</creatorcontrib><title>Carbon Dioxide Valorization via Formate Electrosynthesis in a Wide Potential Window</title><title>Advanced functional materials</title><description>The electrochemical CO2 reduction reaction (CO2RR) is a promising strategy to convert CO2 to carbon‐based fuels and to simultaneously reduce the emission of greenhouse gases into the atmosphere. In this work, the bismuth subcarbonate nanoflowers (BOC NFs) are facilely prepared through a one‐pot synthesis method for efficient formate electrosynthesis through CO2RR. Benefiting from the crystal structure and sheet‐stacked morphology, the in situ measurements and theoretical calculation results reveal the self‐reinforced CO2 adsorption properties and rapid CO2 adsorption–desorption kinetics on the catalyst surface, which significantly facilitate the CO2RR process. As a result, the desirable Faradaic efficiencies of over 90%, with a maximum value of 98.9%, toward formate formation, are achieved in a wide potential window from −0.8 to −1.4 V in an H‐type cell. Moreover, in a flow cell, the superior intrinsic activity of BOC NFs guarantees the high throughput electrocatalytic performance of CO2RR and the FEformate of over 90% with high current density is achieved in a potential range as wide as 1200 mV, demonstrating the great potential of BOC NFs for practical CO2RR applications. These results underscore the effectiveness of designing electrocatalysts with self‐reinforced CO2 adsorption properties to improve electrocatalytic performance for efficient CO2RR.
The bismuth subcarbonate nanoflowers demonstrate highly selective formation of formate in CO2 electroreduction. The self‐contained carbonate species within the electrocatalyst provide the unique reinforced CO2 adsorption properties and fast CO2 adsorption–desorption kinetics, which results in the high formate Faradic efficiencies in a wide potential window.</description><subject>Adsorption</subject><subject>Bismuth</subject><subject>Carbon dioxide</subject><subject>Chemical reduction</subject><subject>CO 2 adsorption</subject><subject>Crystal structure</subject><subject>electrocatalysis</subject><subject>Electrocatalysts</subject><subject>electrochemical CO 2 reduction</subject><subject>Emissions control</subject><subject>formate</subject><subject>Greenhouse gases</subject><subject>In situ measurement</subject><subject>Materials science</subject><subject>Reaction kinetics</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMtLAzEQxoMoWKtXzwHPW_PYJLvH0pdCRcHnLWTzwJTtpiZba_3r3VKpR08z3_D9ZoYPgEuMBhghcq2MWw4IIgRRUeZHoIc55hlFpDg-9PjtFJyltEAIC0HzHngcqViFBo59-PLGwhdVh-i_Veu74adXcBriUrUWTmqr2xjStmnfbfIJ-gYq-LpjHkJrm9arupONCZtzcOJUnezFb-2D5-nkaXSTze9nt6PhPNMkF3nGqNAFd4oQpUVedtIwk1em0kxzwqlRnCGncSkQoaJyjiFbOMcZcVYxQ2gfXO33rmL4WNvUykVYx6Y7KQkvy4JyLGjnGuxduvs-RevkKvqliluJkdwFJ3fByUNwHVDugY2v7fYftxyOp3d_7A9hDnJu</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Sui, Peng‐Fei</creator><creator>Gao, Min‐Rui</creator><creator>Liu, Subiao</creator><creator>Xu, Chenyu</creator><creator>Zhu, Meng‐Nan</creator><creator>Luo, Jing‐Li</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5153-6516</orcidid><orcidid>https://orcid.org/0000-0002-2465-7280</orcidid></search><sort><creationdate>20220801</creationdate><title>Carbon Dioxide Valorization via Formate Electrosynthesis in a Wide Potential Window</title><author>Sui, Peng‐Fei ; Gao, Min‐Rui ; Liu, Subiao ; Xu, Chenyu ; Zhu, Meng‐Nan ; Luo, Jing‐Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2474-537c86fa22ac749537d5d4bdbc5c6263da650fc1970237bff50e8ff652fea5d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorption</topic><topic>Bismuth</topic><topic>Carbon dioxide</topic><topic>Chemical reduction</topic><topic>CO 2 adsorption</topic><topic>Crystal structure</topic><topic>electrocatalysis</topic><topic>Electrocatalysts</topic><topic>electrochemical CO 2 reduction</topic><topic>Emissions control</topic><topic>formate</topic><topic>Greenhouse gases</topic><topic>In situ measurement</topic><topic>Materials science</topic><topic>Reaction kinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sui, Peng‐Fei</creatorcontrib><creatorcontrib>Gao, Min‐Rui</creatorcontrib><creatorcontrib>Liu, Subiao</creatorcontrib><creatorcontrib>Xu, Chenyu</creatorcontrib><creatorcontrib>Zhu, Meng‐Nan</creatorcontrib><creatorcontrib>Luo, Jing‐Li</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sui, Peng‐Fei</au><au>Gao, Min‐Rui</au><au>Liu, Subiao</au><au>Xu, Chenyu</au><au>Zhu, Meng‐Nan</au><au>Luo, Jing‐Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Dioxide Valorization via Formate Electrosynthesis in a Wide Potential Window</atitle><jtitle>Advanced functional materials</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>32</volume><issue>32</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The electrochemical CO2 reduction reaction (CO2RR) is a promising strategy to convert CO2 to carbon‐based fuels and to simultaneously reduce the emission of greenhouse gases into the atmosphere. In this work, the bismuth subcarbonate nanoflowers (BOC NFs) are facilely prepared through a one‐pot synthesis method for efficient formate electrosynthesis through CO2RR. Benefiting from the crystal structure and sheet‐stacked morphology, the in situ measurements and theoretical calculation results reveal the self‐reinforced CO2 adsorption properties and rapid CO2 adsorption–desorption kinetics on the catalyst surface, which significantly facilitate the CO2RR process. As a result, the desirable Faradaic efficiencies of over 90%, with a maximum value of 98.9%, toward formate formation, are achieved in a wide potential window from −0.8 to −1.4 V in an H‐type cell. Moreover, in a flow cell, the superior intrinsic activity of BOC NFs guarantees the high throughput electrocatalytic performance of CO2RR and the FEformate of over 90% with high current density is achieved in a potential range as wide as 1200 mV, demonstrating the great potential of BOC NFs for practical CO2RR applications. These results underscore the effectiveness of designing electrocatalysts with self‐reinforced CO2 adsorption properties to improve electrocatalytic performance for efficient CO2RR.
The bismuth subcarbonate nanoflowers demonstrate highly selective formation of formate in CO2 electroreduction. The self‐contained carbonate species within the electrocatalyst provide the unique reinforced CO2 adsorption properties and fast CO2 adsorption–desorption kinetics, which results in the high formate Faradic efficiencies in a wide potential window.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202203794</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5153-6516</orcidid><orcidid>https://orcid.org/0000-0002-2465-7280</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2022-08, Vol.32 (32), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2699836173 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Adsorption Bismuth Carbon dioxide Chemical reduction CO 2 adsorption Crystal structure electrocatalysis Electrocatalysts electrochemical CO 2 reduction Emissions control formate Greenhouse gases In situ measurement Materials science Reaction kinetics |
title | Carbon Dioxide Valorization via Formate Electrosynthesis in a Wide Potential Window |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Dioxide%20Valorization%20via%20Formate%20Electrosynthesis%20in%20a%20Wide%20Potential%20Window&rft.jtitle=Advanced%20functional%20materials&rft.au=Sui,%20Peng%E2%80%90Fei&rft.date=2022-08-01&rft.volume=32&rft.issue=32&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202203794&rft_dat=%3Cproquest_cross%3E2699836173%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2699836173&rft_id=info:pmid/&rfr_iscdi=true |