Damage criterion approach to high‐strength steel RHS truss joints
This paper describes finite element simulations of the structural deformation and material fracture behaviour of high‐strength steel RHS K gap truss joints. The fundamental scope was to examine whether the joint strength predictions based on the behaviour of lower strength and more ductile steel wit...
Gespeichert in:
Veröffentlicht in: | Steel construction : design and research 2022-08, Vol.15 (3), p.160-171 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 171 |
---|---|
container_issue | 3 |
container_start_page | 160 |
container_title | Steel construction : design and research |
container_volume | 15 |
creator | Mohan, Meera Wilkinson, Tim |
description | This paper describes finite element simulations of the structural deformation and material fracture behaviour of high‐strength steel RHS K gap truss joints. The fundamental scope was to examine whether the joint strength predictions based on the behaviour of lower strength and more ductile steel with a yield stress of 355 MPa or less would hold good for higher strength 450 MPa steel with a lower ductility. The FEA reliability analysis indicates that for failure modes associated with local buckling, yielding and deformation (chord side wall failure, chord face plastification and brace failures due to reduced effective width), the existing approach could, with modifications, be extended to cover higher strength tubes, but for failure modes associated with fracture or ductility or modes liable to brittle failure (tearing in the tension brace and chord punching shear), a strength reduction modifying factor was required. The finite element simulations incorporated a damage mechanics approach to calibrate experimental results in both the fracture and deformation modes of failure. The paper proposes a new formulation for strength and incorporates reduced ductility in high‐grade steel with a modifier function that is not based on yield stress, instead recognizes the reduced ultimate strains, damage parameter for fracture and ultimate stress of the material. |
doi_str_mv | 10.1002/stco.202100027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2699834447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2699834447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2027-742a688a9c57051231a04c89ff97d622d1f4973eceee87e2d4625bc7060e87b33</originalsourceid><addsrcrecordid>eNqFkM1qAjEUhUNpoWLddh3oemz-ZpIsy_THgiBUuw4x3nFGdMYmkeKuj9Bn9EkasdhlV_ce-M69h4PQLSVDSgi7D9F1Q0ZYEoTJC9SjqpAZybm-PO-MXKNBCKuEEK6UJHkPlY92Y5eAnW8i-KZrsd1ufWddjWOH62ZZH76-Q_TQLmONQwRY47fRFEe_CwGvuqaN4QZdVXYdYPA7--j9-WlWjrLx5OW1fBhnLgWTmRTMFkpZ7fL0mjJOLRFO6arSclEwtqCV0JKDAwAlgS1EwfK5k6QgSc8576O7090U8GMHIZpVt_NtemlYobXiQgiZqOGJcr4LwUNltr7ZWL83lJhjV-bYlTl3lQz6ZPhs1rD_hzbTWTn58_4AanJtYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2699834447</pqid></control><display><type>article</type><title>Damage criterion approach to high‐strength steel RHS truss joints</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mohan, Meera ; Wilkinson, Tim</creator><creatorcontrib>Mohan, Meera ; Wilkinson, Tim</creatorcontrib><description>This paper describes finite element simulations of the structural deformation and material fracture behaviour of high‐strength steel RHS K gap truss joints. The fundamental scope was to examine whether the joint strength predictions based on the behaviour of lower strength and more ductile steel with a yield stress of 355 MPa or less would hold good for higher strength 450 MPa steel with a lower ductility. The FEA reliability analysis indicates that for failure modes associated with local buckling, yielding and deformation (chord side wall failure, chord face plastification and brace failures due to reduced effective width), the existing approach could, with modifications, be extended to cover higher strength tubes, but for failure modes associated with fracture or ductility or modes liable to brittle failure (tearing in the tension brace and chord punching shear), a strength reduction modifying factor was required. The finite element simulations incorporated a damage mechanics approach to calibrate experimental results in both the fracture and deformation modes of failure. The paper proposes a new formulation for strength and incorporates reduced ductility in high‐grade steel with a modifier function that is not based on yield stress, instead recognizes the reduced ultimate strains, damage parameter for fracture and ultimate stress of the material.</description><identifier>ISSN: 1867-0520</identifier><identifier>EISSN: 1867-0539</identifier><identifier>DOI: 10.1002/stco.202100027</identifier><language>eng</language><publisher>Berlin: Ernst & Sohn GmbH</publisher><subject>Analysis and design ; Berechnungs‐ und Bemessungsverfahren ; Damage ; Deformation ; design strength equations ; Ductility ; Failure ; Failure analysis ; Failure modes ; Finite element method ; grade C450 RHS ; High strength steels ; K gap joints ; Punching shear ; Reliability analysis ; Stahlhochbau ; Steel buildings ; Tensile stress ; Trusses ; Tubes ; Yield strength ; Yield stress</subject><ispartof>Steel construction : design and research, 2022-08, Vol.15 (3), p.160-171</ispartof><rights>2022 The Authors. Published by Ernst & Sohn GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2027-742a688a9c57051231a04c89ff97d622d1f4973eceee87e2d4625bc7060e87b33</citedby><cites>FETCH-LOGICAL-c2027-742a688a9c57051231a04c89ff97d622d1f4973eceee87e2d4625bc7060e87b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fstco.202100027$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fstco.202100027$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Mohan, Meera</creatorcontrib><creatorcontrib>Wilkinson, Tim</creatorcontrib><title>Damage criterion approach to high‐strength steel RHS truss joints</title><title>Steel construction : design and research</title><description>This paper describes finite element simulations of the structural deformation and material fracture behaviour of high‐strength steel RHS K gap truss joints. The fundamental scope was to examine whether the joint strength predictions based on the behaviour of lower strength and more ductile steel with a yield stress of 355 MPa or less would hold good for higher strength 450 MPa steel with a lower ductility. The FEA reliability analysis indicates that for failure modes associated with local buckling, yielding and deformation (chord side wall failure, chord face plastification and brace failures due to reduced effective width), the existing approach could, with modifications, be extended to cover higher strength tubes, but for failure modes associated with fracture or ductility or modes liable to brittle failure (tearing in the tension brace and chord punching shear), a strength reduction modifying factor was required. The finite element simulations incorporated a damage mechanics approach to calibrate experimental results in both the fracture and deformation modes of failure. The paper proposes a new formulation for strength and incorporates reduced ductility in high‐grade steel with a modifier function that is not based on yield stress, instead recognizes the reduced ultimate strains, damage parameter for fracture and ultimate stress of the material.</description><subject>Analysis and design</subject><subject>Berechnungs‐ und Bemessungsverfahren</subject><subject>Damage</subject><subject>Deformation</subject><subject>design strength equations</subject><subject>Ductility</subject><subject>Failure</subject><subject>Failure analysis</subject><subject>Failure modes</subject><subject>Finite element method</subject><subject>grade C450 RHS</subject><subject>High strength steels</subject><subject>K gap joints</subject><subject>Punching shear</subject><subject>Reliability analysis</subject><subject>Stahlhochbau</subject><subject>Steel buildings</subject><subject>Tensile stress</subject><subject>Trusses</subject><subject>Tubes</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>1867-0520</issn><issn>1867-0539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM1qAjEUhUNpoWLddh3oemz-ZpIsy_THgiBUuw4x3nFGdMYmkeKuj9Bn9EkasdhlV_ce-M69h4PQLSVDSgi7D9F1Q0ZYEoTJC9SjqpAZybm-PO-MXKNBCKuEEK6UJHkPlY92Y5eAnW8i-KZrsd1ufWddjWOH62ZZH76-Q_TQLmONQwRY47fRFEe_CwGvuqaN4QZdVXYdYPA7--j9-WlWjrLx5OW1fBhnLgWTmRTMFkpZ7fL0mjJOLRFO6arSclEwtqCV0JKDAwAlgS1EwfK5k6QgSc8576O7090U8GMHIZpVt_NtemlYobXiQgiZqOGJcr4LwUNltr7ZWL83lJhjV-bYlTl3lQz6ZPhs1rD_hzbTWTn58_4AanJtYQ</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Mohan, Meera</creator><creator>Wilkinson, Tim</creator><general>Ernst & Sohn GmbH</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>202208</creationdate><title>Damage criterion approach to high‐strength steel RHS truss joints</title><author>Mohan, Meera ; Wilkinson, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2027-742a688a9c57051231a04c89ff97d622d1f4973eceee87e2d4625bc7060e87b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis and design</topic><topic>Berechnungs‐ und Bemessungsverfahren</topic><topic>Damage</topic><topic>Deformation</topic><topic>design strength equations</topic><topic>Ductility</topic><topic>Failure</topic><topic>Failure analysis</topic><topic>Failure modes</topic><topic>Finite element method</topic><topic>grade C450 RHS</topic><topic>High strength steels</topic><topic>K gap joints</topic><topic>Punching shear</topic><topic>Reliability analysis</topic><topic>Stahlhochbau</topic><topic>Steel buildings</topic><topic>Tensile stress</topic><topic>Trusses</topic><topic>Tubes</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohan, Meera</creatorcontrib><creatorcontrib>Wilkinson, Tim</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Steel construction : design and research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohan, Meera</au><au>Wilkinson, Tim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Damage criterion approach to high‐strength steel RHS truss joints</atitle><jtitle>Steel construction : design and research</jtitle><date>2022-08</date><risdate>2022</risdate><volume>15</volume><issue>3</issue><spage>160</spage><epage>171</epage><pages>160-171</pages><issn>1867-0520</issn><eissn>1867-0539</eissn><abstract>This paper describes finite element simulations of the structural deformation and material fracture behaviour of high‐strength steel RHS K gap truss joints. The fundamental scope was to examine whether the joint strength predictions based on the behaviour of lower strength and more ductile steel with a yield stress of 355 MPa or less would hold good for higher strength 450 MPa steel with a lower ductility. The FEA reliability analysis indicates that for failure modes associated with local buckling, yielding and deformation (chord side wall failure, chord face plastification and brace failures due to reduced effective width), the existing approach could, with modifications, be extended to cover higher strength tubes, but for failure modes associated with fracture or ductility or modes liable to brittle failure (tearing in the tension brace and chord punching shear), a strength reduction modifying factor was required. The finite element simulations incorporated a damage mechanics approach to calibrate experimental results in both the fracture and deformation modes of failure. The paper proposes a new formulation for strength and incorporates reduced ductility in high‐grade steel with a modifier function that is not based on yield stress, instead recognizes the reduced ultimate strains, damage parameter for fracture and ultimate stress of the material.</abstract><cop>Berlin</cop><pub>Ernst & Sohn GmbH</pub><doi>10.1002/stco.202100027</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1867-0520 |
ispartof | Steel construction : design and research, 2022-08, Vol.15 (3), p.160-171 |
issn | 1867-0520 1867-0539 |
language | eng |
recordid | cdi_proquest_journals_2699834447 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Analysis and design Berechnungs‐ und Bemessungsverfahren Damage Deformation design strength equations Ductility Failure Failure analysis Failure modes Finite element method grade C450 RHS High strength steels K gap joints Punching shear Reliability analysis Stahlhochbau Steel buildings Tensile stress Trusses Tubes Yield strength Yield stress |
title | Damage criterion approach to high‐strength steel RHS truss joints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A07%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Damage%20criterion%20approach%20to%20high%E2%80%90strength%20steel%20RHS%20truss%20joints&rft.jtitle=Steel%20construction%20:%20design%20and%20research&rft.au=Mohan,%20Meera&rft.date=2022-08&rft.volume=15&rft.issue=3&rft.spage=160&rft.epage=171&rft.pages=160-171&rft.issn=1867-0520&rft.eissn=1867-0539&rft_id=info:doi/10.1002/stco.202100027&rft_dat=%3Cproquest_cross%3E2699834447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2699834447&rft_id=info:pmid/&rfr_iscdi=true |