Defect Engineering in MBE-Grown CdTe Buffer Layers on GaAs (211)B Substrates

Demand for high-performance HgCdTe infrared detectors with larger array size and lower cost has fuelled the heteroepitaxial growth of HgCdTe on CdTe buffer layers on lattice-mismatched alternative substrates such as Si, Ge, GaAs and GaSb. However, the resulting high threading dislocation (TD) densit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2022-09, Vol.51 (9), p.4869-4883
Hauptverfasser: Pan, W. W., Gu, R. J., Zhang, Z. K., Lei, W., Umana-Membreno, G. A., Smith, D. J., Antoszewski, J., Faraone, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4883
container_issue 9
container_start_page 4869
container_title Journal of electronic materials
container_volume 51
creator Pan, W. W.
Gu, R. J.
Zhang, Z. K.
Lei, W.
Umana-Membreno, G. A.
Smith, D. J.
Antoszewski, J.
Faraone, L.
description Demand for high-performance HgCdTe infrared detectors with larger array size and lower cost has fuelled the heteroepitaxial growth of HgCdTe on CdTe buffer layers on lattice-mismatched alternative substrates such as Si, Ge, GaAs and GaSb. However, the resulting high threading dislocation (TD) density in HgCdTe/CdTe limits their ultimate application. Herein, strained CdZnTe/CdTe superlattice layers have been used as dislocation filtering layers (DFL) to reduce the TDs in CdTe buffer layers grown on GaAs (211)B substrates (14.4% lattice-mismatch) by molecular beam epitaxy (MBE). Cross-sectional microstructure characterization indicates that the DFLs suppress the propagation of TDs. For optimal Zn content combined with thermal annealing, the DFLs effectively reduce the defect density of the upper-most CdTe layer from low-10 7 cm −2 to the critical level of below 10 6 cm −2 . In comparison to conventional buffer CdTe layers, the in-plane lattice of the CdTe layers in/near the DFL region is compressively strained, leading to a spread in x-ray double-crystal rocking curve full-width at half-maximum values but better in-plane lattice-matching with HgCdTe. The combined advantages of lower dislocation density and better lattice-matching with HgCdTe indicate that the DFL approach is a promising path towards achieving heteroepitaxy of high-quality HgCdTe on large-area lattice-mismatched substrates for fabricating next-generation infrared detectors.
doi_str_mv 10.1007/s11664-022-09725-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2699832221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2699832221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-35db836b63f2b597fe401f488e076ac775297239602acd3c109c5a4a330024b03</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5gsscBguPPFTjLSUgpSEANFYrOc1K5SQVLsRKj_npQisTHd8r73dB9j5wjXCJDeREStEwFSCshTqQQesBGqhARm-u2QjYA0CiVJHbOTGNcAqDDDESvunHdVx2fNqm6cC3Wz4nXDnyYzMQ_tV8Ony4Xjk957F3hhty5E3jZ8bm8jv5SIVxP-0pexC7Zz8ZQdefse3dnvHbPX-9li-iCK5_nj9LYQFWnqBKllmZEuNXlZqjz1LgH0SZY5SLWt0lTJ4QfKNUhbLalCyCtlE0sEIJMSaMwu9r2b0H72LnZm3fahGSaN1HmekZQSh5Tcp6rQxhicN5tQf9iwNQhmZ83srZnBmvmxZnYQ7aG42blw4a_6H-obO1Brog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2699832221</pqid></control><display><type>article</type><title>Defect Engineering in MBE-Grown CdTe Buffer Layers on GaAs (211)B Substrates</title><source>SpringerLink Journals - AutoHoldings</source><creator>Pan, W. W. ; Gu, R. J. ; Zhang, Z. K. ; Lei, W. ; Umana-Membreno, G. A. ; Smith, D. J. ; Antoszewski, J. ; Faraone, L.</creator><creatorcontrib>Pan, W. W. ; Gu, R. J. ; Zhang, Z. K. ; Lei, W. ; Umana-Membreno, G. A. ; Smith, D. J. ; Antoszewski, J. ; Faraone, L.</creatorcontrib><description>Demand for high-performance HgCdTe infrared detectors with larger array size and lower cost has fuelled the heteroepitaxial growth of HgCdTe on CdTe buffer layers on lattice-mismatched alternative substrates such as Si, Ge, GaAs and GaSb. However, the resulting high threading dislocation (TD) density in HgCdTe/CdTe limits their ultimate application. Herein, strained CdZnTe/CdTe superlattice layers have been used as dislocation filtering layers (DFL) to reduce the TDs in CdTe buffer layers grown on GaAs (211)B substrates (14.4% lattice-mismatch) by molecular beam epitaxy (MBE). Cross-sectional microstructure characterization indicates that the DFLs suppress the propagation of TDs. For optimal Zn content combined with thermal annealing, the DFLs effectively reduce the defect density of the upper-most CdTe layer from low-10 7 cm −2 to the critical level of below 10 6 cm −2 . In comparison to conventional buffer CdTe layers, the in-plane lattice of the CdTe layers in/near the DFL region is compressively strained, leading to a spread in x-ray double-crystal rocking curve full-width at half-maximum values but better in-plane lattice-matching with HgCdTe. The combined advantages of lower dislocation density and better lattice-matching with HgCdTe indicate that the DFL approach is a promising path towards achieving heteroepitaxy of high-quality HgCdTe on large-area lattice-mismatched substrates for fabricating next-generation infrared detectors.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-022-09725-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Buffer layers ; Cadmium tellurides ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystal lattices ; Dislocation density ; Electronics and Microelectronics ; Gallium arsenide ; Germanium ; Infrared detectors ; Instrumentation ; Lattice matching ; Materials Science ; Mercury cadmium tellurides ; Molecular beam epitaxy ; Optical and Electronic Materials ; Original Research Article ; Silicon substrates ; Solid State Physics ; Superlattices ; Threading dislocations</subject><ispartof>Journal of electronic materials, 2022-09, Vol.51 (9), p.4869-4883</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-35db836b63f2b597fe401f488e076ac775297239602acd3c109c5a4a330024b03</citedby><cites>FETCH-LOGICAL-c363t-35db836b63f2b597fe401f488e076ac775297239602acd3c109c5a4a330024b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-022-09725-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-022-09725-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Pan, W. W.</creatorcontrib><creatorcontrib>Gu, R. J.</creatorcontrib><creatorcontrib>Zhang, Z. K.</creatorcontrib><creatorcontrib>Lei, W.</creatorcontrib><creatorcontrib>Umana-Membreno, G. A.</creatorcontrib><creatorcontrib>Smith, D. J.</creatorcontrib><creatorcontrib>Antoszewski, J.</creatorcontrib><creatorcontrib>Faraone, L.</creatorcontrib><title>Defect Engineering in MBE-Grown CdTe Buffer Layers on GaAs (211)B Substrates</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>Demand for high-performance HgCdTe infrared detectors with larger array size and lower cost has fuelled the heteroepitaxial growth of HgCdTe on CdTe buffer layers on lattice-mismatched alternative substrates such as Si, Ge, GaAs and GaSb. However, the resulting high threading dislocation (TD) density in HgCdTe/CdTe limits their ultimate application. Herein, strained CdZnTe/CdTe superlattice layers have been used as dislocation filtering layers (DFL) to reduce the TDs in CdTe buffer layers grown on GaAs (211)B substrates (14.4% lattice-mismatch) by molecular beam epitaxy (MBE). Cross-sectional microstructure characterization indicates that the DFLs suppress the propagation of TDs. For optimal Zn content combined with thermal annealing, the DFLs effectively reduce the defect density of the upper-most CdTe layer from low-10 7 cm −2 to the critical level of below 10 6 cm −2 . In comparison to conventional buffer CdTe layers, the in-plane lattice of the CdTe layers in/near the DFL region is compressively strained, leading to a spread in x-ray double-crystal rocking curve full-width at half-maximum values but better in-plane lattice-matching with HgCdTe. The combined advantages of lower dislocation density and better lattice-matching with HgCdTe indicate that the DFL approach is a promising path towards achieving heteroepitaxy of high-quality HgCdTe on large-area lattice-mismatched substrates for fabricating next-generation infrared detectors.</description><subject>Buffer layers</subject><subject>Cadmium tellurides</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystal lattices</subject><subject>Dislocation density</subject><subject>Electronics and Microelectronics</subject><subject>Gallium arsenide</subject><subject>Germanium</subject><subject>Infrared detectors</subject><subject>Instrumentation</subject><subject>Lattice matching</subject><subject>Materials Science</subject><subject>Mercury cadmium tellurides</subject><subject>Molecular beam epitaxy</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Silicon substrates</subject><subject>Solid State Physics</subject><subject>Superlattices</subject><subject>Threading dislocations</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kDFPwzAQhS0EEqXwB5gsscBguPPFTjLSUgpSEANFYrOc1K5SQVLsRKj_npQisTHd8r73dB9j5wjXCJDeREStEwFSCshTqQQesBGqhARm-u2QjYA0CiVJHbOTGNcAqDDDESvunHdVx2fNqm6cC3Wz4nXDnyYzMQ_tV8Ony4Xjk957F3hhty5E3jZ8bm8jv5SIVxP-0pexC7Zz8ZQdefse3dnvHbPX-9li-iCK5_nj9LYQFWnqBKllmZEuNXlZqjz1LgH0SZY5SLWt0lTJ4QfKNUhbLalCyCtlE0sEIJMSaMwu9r2b0H72LnZm3fahGSaN1HmekZQSh5Tcp6rQxhicN5tQf9iwNQhmZ83srZnBmvmxZnYQ7aG42blw4a_6H-obO1Brog</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Pan, W. W.</creator><creator>Gu, R. J.</creator><creator>Zhang, Z. K.</creator><creator>Lei, W.</creator><creator>Umana-Membreno, G. A.</creator><creator>Smith, D. J.</creator><creator>Antoszewski, J.</creator><creator>Faraone, L.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20220901</creationdate><title>Defect Engineering in MBE-Grown CdTe Buffer Layers on GaAs (211)B Substrates</title><author>Pan, W. W. ; Gu, R. J. ; Zhang, Z. K. ; Lei, W. ; Umana-Membreno, G. A. ; Smith, D. J. ; Antoszewski, J. ; Faraone, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-35db836b63f2b597fe401f488e076ac775297239602acd3c109c5a4a330024b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Buffer layers</topic><topic>Cadmium tellurides</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystal lattices</topic><topic>Dislocation density</topic><topic>Electronics and Microelectronics</topic><topic>Gallium arsenide</topic><topic>Germanium</topic><topic>Infrared detectors</topic><topic>Instrumentation</topic><topic>Lattice matching</topic><topic>Materials Science</topic><topic>Mercury cadmium tellurides</topic><topic>Molecular beam epitaxy</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Silicon substrates</topic><topic>Solid State Physics</topic><topic>Superlattices</topic><topic>Threading dislocations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, W. W.</creatorcontrib><creatorcontrib>Gu, R. J.</creatorcontrib><creatorcontrib>Zhang, Z. K.</creatorcontrib><creatorcontrib>Lei, W.</creatorcontrib><creatorcontrib>Umana-Membreno, G. A.</creatorcontrib><creatorcontrib>Smith, D. J.</creatorcontrib><creatorcontrib>Antoszewski, J.</creatorcontrib><creatorcontrib>Faraone, L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, W. W.</au><au>Gu, R. J.</au><au>Zhang, Z. K.</au><au>Lei, W.</au><au>Umana-Membreno, G. A.</au><au>Smith, D. J.</au><au>Antoszewski, J.</au><au>Faraone, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect Engineering in MBE-Grown CdTe Buffer Layers on GaAs (211)B Substrates</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>51</volume><issue>9</issue><spage>4869</spage><epage>4883</epage><pages>4869-4883</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Demand for high-performance HgCdTe infrared detectors with larger array size and lower cost has fuelled the heteroepitaxial growth of HgCdTe on CdTe buffer layers on lattice-mismatched alternative substrates such as Si, Ge, GaAs and GaSb. However, the resulting high threading dislocation (TD) density in HgCdTe/CdTe limits their ultimate application. Herein, strained CdZnTe/CdTe superlattice layers have been used as dislocation filtering layers (DFL) to reduce the TDs in CdTe buffer layers grown on GaAs (211)B substrates (14.4% lattice-mismatch) by molecular beam epitaxy (MBE). Cross-sectional microstructure characterization indicates that the DFLs suppress the propagation of TDs. For optimal Zn content combined with thermal annealing, the DFLs effectively reduce the defect density of the upper-most CdTe layer from low-10 7 cm −2 to the critical level of below 10 6 cm −2 . In comparison to conventional buffer CdTe layers, the in-plane lattice of the CdTe layers in/near the DFL region is compressively strained, leading to a spread in x-ray double-crystal rocking curve full-width at half-maximum values but better in-plane lattice-matching with HgCdTe. The combined advantages of lower dislocation density and better lattice-matching with HgCdTe indicate that the DFL approach is a promising path towards achieving heteroepitaxy of high-quality HgCdTe on large-area lattice-mismatched substrates for fabricating next-generation infrared detectors.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-022-09725-1</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2022-09, Vol.51 (9), p.4869-4883
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2699832221
source SpringerLink Journals - AutoHoldings
subjects Buffer layers
Cadmium tellurides
Characterization and Evaluation of Materials
Chemistry and Materials Science
Crystal lattices
Dislocation density
Electronics and Microelectronics
Gallium arsenide
Germanium
Infrared detectors
Instrumentation
Lattice matching
Materials Science
Mercury cadmium tellurides
Molecular beam epitaxy
Optical and Electronic Materials
Original Research Article
Silicon substrates
Solid State Physics
Superlattices
Threading dislocations
title Defect Engineering in MBE-Grown CdTe Buffer Layers on GaAs (211)B Substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A09%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20Engineering%20in%20MBE-Grown%20CdTe%20Buffer%20Layers%20on%20GaAs%20(211)B%20Substrates&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Pan,%20W.%20W.&rft.date=2022-09-01&rft.volume=51&rft.issue=9&rft.spage=4869&rft.epage=4883&rft.pages=4869-4883&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-022-09725-1&rft_dat=%3Cproquest_cross%3E2699832221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2699832221&rft_id=info:pmid/&rfr_iscdi=true