Highly Stretchable, Self-Recoverable, and Conductive Double-Network Gels Containing Deep Eutectic Solvent for a Flexible Supercapacitor and Strain Sensor

Due to the advantages of high ion density, low volatility, non-toxicity, and low cost, deep eutectic solvent gels have attracted widespread interest as novel solid-state ionic conductors for flexible devices. However, most of the currently developed deep eutectic solvent gels have weak mechanical pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2022-09, Vol.51 (9), p.5074-5086
Hauptverfasser: Wu, Linlin, Zhou, Jiacheng, Bu, Ximan, Ge, Yongxin, Gao, Yifeng, Ma, Xiaofeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5086
container_issue 9
container_start_page 5074
container_title Journal of electronic materials
container_volume 51
creator Wu, Linlin
Zhou, Jiacheng
Bu, Ximan
Ge, Yongxin
Gao, Yifeng
Ma, Xiaofeng
description Due to the advantages of high ion density, low volatility, non-toxicity, and low cost, deep eutectic solvent gels have attracted widespread interest as novel solid-state ionic conductors for flexible devices. However, most of the currently developed deep eutectic solvent gels have weak mechanical properties, which seriously hinder their large-scale application. Herein, tough and ultrastretchable agar-based double-network deep eutectic solvent gels were successfully fabricated through the self-assembly of agar at a concentration range of 2% to 6% in a choline chloride/urea/water eutectic mixture (ChCl:urea:H 2 O = 1:2:1) by heating–cooling to form the first physical dissipative network and combination with the second Al 3+ -cross-linked hybrid poly(acrylic acid) (PAA) network. Such a double-network and multi-bond design endow the obtained 22 wt.% polymer scaffold-supported deep eutectic solvent gels with good mechanical properties (high tensile strength of 216 kPa and toughness of 2112 kJ m −3 ), stretchability (breaking strain of 1566%), good self-recovery ability (91% recovery efficiency after 600% strain deformation), and high room-temperature ionic conductivity of 2.1 mS cm −1 . Furthermore, agar-based double network deep eutectic solvent gels were successfully used as stretchable gel electrolytes for the fabrication of electric double-layer capacitors and reliable flexible sensors with excellent electrochemical performance over a wide strain range. Graphical Abstract A nonvolatile agar-based double-network gel containing a deep eutectic solvent with high toughness of 2112 kJ m −3 , high stretchability of 1595%, excellent recovery property, and ionic conductivity of 2.1 mS cm −1 is fabricated for flexible electronics by the self-assembly of agar in a choline chloride/urea/water eutectic mixture (ChCl:urea:H 2 O = 1:2:1) to form the first physical dissipative network and combination with a second Al 3+ -cross-linked hybrid PAA network.
doi_str_mv 10.1007/s11664-022-09743-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2699831116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2699831116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-51b4d95f881433d35284a366ece458ef0d31b651e1b4d397e1ea60efa5f8072f3</originalsourceid><addsrcrecordid>eNp9kV9P2zAUxa0JpBXYF9iTJV5n8I1jN3lELaWT0JAoSLxZrnNTUkKc2U758032bXGXSXvjyda9v3OO5UPId-BnwPn0PAAolTOeZYyX01yw9y9kAjJdoFAPB2TChQImMyG_kqMQtpyDhAIm5M-y2Ty2b3QVPUb7aNYt_qArbGt2i9bt0I8T01V05rpqsLHZIZ27IY3ZL4wvzj_RK2zDfh1N0zXdhs4Re3o5REy0pSvX7rCLtHaeGrpo8bVJYroaevTW9MY2cb9JCekRySHFd8H5E3JYmzbgt3_nMblfXN7Nluz65urn7OKa2SwvI5OwzqtS1kUBuRCVkFmRG6EUWsxlgTWvBKyVBNxzopwioFEca5MkfJrV4picjr69d78HDFFv3eC7FKkzVZaFgPS3icpGynoXgsda9755Nv5NA9f7CvRYgU4V6L8V6PckEqMoJLjboP9v_YnqA_2JjB8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2699831116</pqid></control><display><type>article</type><title>Highly Stretchable, Self-Recoverable, and Conductive Double-Network Gels Containing Deep Eutectic Solvent for a Flexible Supercapacitor and Strain Sensor</title><source>SpringerLink (Online service)</source><creator>Wu, Linlin ; Zhou, Jiacheng ; Bu, Ximan ; Ge, Yongxin ; Gao, Yifeng ; Ma, Xiaofeng</creator><creatorcontrib>Wu, Linlin ; Zhou, Jiacheng ; Bu, Ximan ; Ge, Yongxin ; Gao, Yifeng ; Ma, Xiaofeng</creatorcontrib><description>Due to the advantages of high ion density, low volatility, non-toxicity, and low cost, deep eutectic solvent gels have attracted widespread interest as novel solid-state ionic conductors for flexible devices. However, most of the currently developed deep eutectic solvent gels have weak mechanical properties, which seriously hinder their large-scale application. Herein, tough and ultrastretchable agar-based double-network deep eutectic solvent gels were successfully fabricated through the self-assembly of agar at a concentration range of 2% to 6% in a choline chloride/urea/water eutectic mixture (ChCl:urea:H 2 O = 1:2:1) by heating–cooling to form the first physical dissipative network and combination with the second Al 3+ -cross-linked hybrid poly(acrylic acid) (PAA) network. Such a double-network and multi-bond design endow the obtained 22 wt.% polymer scaffold-supported deep eutectic solvent gels with good mechanical properties (high tensile strength of 216 kPa and toughness of 2112 kJ m −3 ), stretchability (breaking strain of 1566%), good self-recovery ability (91% recovery efficiency after 600% strain deformation), and high room-temperature ionic conductivity of 2.1 mS cm −1 . Furthermore, agar-based double network deep eutectic solvent gels were successfully used as stretchable gel electrolytes for the fabrication of electric double-layer capacitors and reliable flexible sensors with excellent electrochemical performance over a wide strain range. Graphical Abstract A nonvolatile agar-based double-network gel containing a deep eutectic solvent with high toughness of 2112 kJ m −3 , high stretchability of 1595%, excellent recovery property, and ionic conductivity of 2.1 mS cm −1 is fabricated for flexible electronics by the self-assembly of agar in a choline chloride/urea/water eutectic mixture (ChCl:urea:H 2 O = 1:2:1) to form the first physical dissipative network and combination with a second Al 3+ -cross-linked hybrid PAA network.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-022-09743-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemical sensors ; Chemistry and Materials Science ; Chlorides ; Choline ; Conductors ; Crosslinking ; Dissipation ; Electrochemical analysis ; Electrolytes ; Electronics and Microelectronics ; Eutectics ; Flexible components ; Gels ; Instrumentation ; Ion currents ; Ion density (concentration) ; Materials Science ; Mechanical properties ; Mixtures ; Optical and Electronic Materials ; Original Research Article ; Polyacrylic acid ; Recovery ; Room temperature ; Self-assembly ; Solid State Physics ; Solvents ; Stretchability ; Tensile strength ; Toughness ; Toxicity ; Ureas</subject><ispartof>Journal of electronic materials, 2022-09, Vol.51 (9), p.5074-5086</ispartof><rights>The Minerals, Metals &amp; Materials Society 2022</rights><rights>The Minerals, Metals &amp; Materials Society 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-51b4d95f881433d35284a366ece458ef0d31b651e1b4d397e1ea60efa5f8072f3</citedby><cites>FETCH-LOGICAL-c249t-51b4d95f881433d35284a366ece458ef0d31b651e1b4d397e1ea60efa5f8072f3</cites><orcidid>0000-0002-5567-8519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-022-09743-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-022-09743-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Wu, Linlin</creatorcontrib><creatorcontrib>Zhou, Jiacheng</creatorcontrib><creatorcontrib>Bu, Ximan</creatorcontrib><creatorcontrib>Ge, Yongxin</creatorcontrib><creatorcontrib>Gao, Yifeng</creatorcontrib><creatorcontrib>Ma, Xiaofeng</creatorcontrib><title>Highly Stretchable, Self-Recoverable, and Conductive Double-Network Gels Containing Deep Eutectic Solvent for a Flexible Supercapacitor and Strain Sensor</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>Due to the advantages of high ion density, low volatility, non-toxicity, and low cost, deep eutectic solvent gels have attracted widespread interest as novel solid-state ionic conductors for flexible devices. However, most of the currently developed deep eutectic solvent gels have weak mechanical properties, which seriously hinder their large-scale application. Herein, tough and ultrastretchable agar-based double-network deep eutectic solvent gels were successfully fabricated through the self-assembly of agar at a concentration range of 2% to 6% in a choline chloride/urea/water eutectic mixture (ChCl:urea:H 2 O = 1:2:1) by heating–cooling to form the first physical dissipative network and combination with the second Al 3+ -cross-linked hybrid poly(acrylic acid) (PAA) network. Such a double-network and multi-bond design endow the obtained 22 wt.% polymer scaffold-supported deep eutectic solvent gels with good mechanical properties (high tensile strength of 216 kPa and toughness of 2112 kJ m −3 ), stretchability (breaking strain of 1566%), good self-recovery ability (91% recovery efficiency after 600% strain deformation), and high room-temperature ionic conductivity of 2.1 mS cm −1 . Furthermore, agar-based double network deep eutectic solvent gels were successfully used as stretchable gel electrolytes for the fabrication of electric double-layer capacitors and reliable flexible sensors with excellent electrochemical performance over a wide strain range. Graphical Abstract A nonvolatile agar-based double-network gel containing a deep eutectic solvent with high toughness of 2112 kJ m −3 , high stretchability of 1595%, excellent recovery property, and ionic conductivity of 2.1 mS cm −1 is fabricated for flexible electronics by the self-assembly of agar in a choline chloride/urea/water eutectic mixture (ChCl:urea:H 2 O = 1:2:1) to form the first physical dissipative network and combination with a second Al 3+ -cross-linked hybrid PAA network.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemical sensors</subject><subject>Chemistry and Materials Science</subject><subject>Chlorides</subject><subject>Choline</subject><subject>Conductors</subject><subject>Crosslinking</subject><subject>Dissipation</subject><subject>Electrochemical analysis</subject><subject>Electrolytes</subject><subject>Electronics and Microelectronics</subject><subject>Eutectics</subject><subject>Flexible components</subject><subject>Gels</subject><subject>Instrumentation</subject><subject>Ion currents</subject><subject>Ion density (concentration)</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Mixtures</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Polyacrylic acid</subject><subject>Recovery</subject><subject>Room temperature</subject><subject>Self-assembly</subject><subject>Solid State Physics</subject><subject>Solvents</subject><subject>Stretchability</subject><subject>Tensile strength</subject><subject>Toughness</subject><subject>Toxicity</subject><subject>Ureas</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kV9P2zAUxa0JpBXYF9iTJV5n8I1jN3lELaWT0JAoSLxZrnNTUkKc2U758032bXGXSXvjyda9v3OO5UPId-BnwPn0PAAolTOeZYyX01yw9y9kAjJdoFAPB2TChQImMyG_kqMQtpyDhAIm5M-y2Ty2b3QVPUb7aNYt_qArbGt2i9bt0I8T01V05rpqsLHZIZ27IY3ZL4wvzj_RK2zDfh1N0zXdhs4Re3o5REy0pSvX7rCLtHaeGrpo8bVJYroaevTW9MY2cb9JCekRySHFd8H5E3JYmzbgt3_nMblfXN7Nluz65urn7OKa2SwvI5OwzqtS1kUBuRCVkFmRG6EUWsxlgTWvBKyVBNxzopwioFEca5MkfJrV4picjr69d78HDFFv3eC7FKkzVZaFgPS3icpGynoXgsda9755Nv5NA9f7CvRYgU4V6L8V6PckEqMoJLjboP9v_YnqA_2JjB8</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Wu, Linlin</creator><creator>Zhou, Jiacheng</creator><creator>Bu, Ximan</creator><creator>Ge, Yongxin</creator><creator>Gao, Yifeng</creator><creator>Ma, Xiaofeng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-5567-8519</orcidid></search><sort><creationdate>20220901</creationdate><title>Highly Stretchable, Self-Recoverable, and Conductive Double-Network Gels Containing Deep Eutectic Solvent for a Flexible Supercapacitor and Strain Sensor</title><author>Wu, Linlin ; Zhou, Jiacheng ; Bu, Ximan ; Ge, Yongxin ; Gao, Yifeng ; Ma, Xiaofeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-51b4d95f881433d35284a366ece458ef0d31b651e1b4d397e1ea60efa5f8072f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemical sensors</topic><topic>Chemistry and Materials Science</topic><topic>Chlorides</topic><topic>Choline</topic><topic>Conductors</topic><topic>Crosslinking</topic><topic>Dissipation</topic><topic>Electrochemical analysis</topic><topic>Electrolytes</topic><topic>Electronics and Microelectronics</topic><topic>Eutectics</topic><topic>Flexible components</topic><topic>Gels</topic><topic>Instrumentation</topic><topic>Ion currents</topic><topic>Ion density (concentration)</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Mixtures</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Polyacrylic acid</topic><topic>Recovery</topic><topic>Room temperature</topic><topic>Self-assembly</topic><topic>Solid State Physics</topic><topic>Solvents</topic><topic>Stretchability</topic><topic>Tensile strength</topic><topic>Toughness</topic><topic>Toxicity</topic><topic>Ureas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Linlin</creatorcontrib><creatorcontrib>Zhou, Jiacheng</creatorcontrib><creatorcontrib>Bu, Ximan</creatorcontrib><creatorcontrib>Ge, Yongxin</creatorcontrib><creatorcontrib>Gao, Yifeng</creatorcontrib><creatorcontrib>Ma, Xiaofeng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Linlin</au><au>Zhou, Jiacheng</au><au>Bu, Ximan</au><au>Ge, Yongxin</au><au>Gao, Yifeng</au><au>Ma, Xiaofeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Stretchable, Self-Recoverable, and Conductive Double-Network Gels Containing Deep Eutectic Solvent for a Flexible Supercapacitor and Strain Sensor</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>51</volume><issue>9</issue><spage>5074</spage><epage>5086</epage><pages>5074-5086</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Due to the advantages of high ion density, low volatility, non-toxicity, and low cost, deep eutectic solvent gels have attracted widespread interest as novel solid-state ionic conductors for flexible devices. However, most of the currently developed deep eutectic solvent gels have weak mechanical properties, which seriously hinder their large-scale application. Herein, tough and ultrastretchable agar-based double-network deep eutectic solvent gels were successfully fabricated through the self-assembly of agar at a concentration range of 2% to 6% in a choline chloride/urea/water eutectic mixture (ChCl:urea:H 2 O = 1:2:1) by heating–cooling to form the first physical dissipative network and combination with the second Al 3+ -cross-linked hybrid poly(acrylic acid) (PAA) network. Such a double-network and multi-bond design endow the obtained 22 wt.% polymer scaffold-supported deep eutectic solvent gels with good mechanical properties (high tensile strength of 216 kPa and toughness of 2112 kJ m −3 ), stretchability (breaking strain of 1566%), good self-recovery ability (91% recovery efficiency after 600% strain deformation), and high room-temperature ionic conductivity of 2.1 mS cm −1 . Furthermore, agar-based double network deep eutectic solvent gels were successfully used as stretchable gel electrolytes for the fabrication of electric double-layer capacitors and reliable flexible sensors with excellent electrochemical performance over a wide strain range. Graphical Abstract A nonvolatile agar-based double-network gel containing a deep eutectic solvent with high toughness of 2112 kJ m −3 , high stretchability of 1595%, excellent recovery property, and ionic conductivity of 2.1 mS cm −1 is fabricated for flexible electronics by the self-assembly of agar in a choline chloride/urea/water eutectic mixture (ChCl:urea:H 2 O = 1:2:1) to form the first physical dissipative network and combination with a second Al 3+ -cross-linked hybrid PAA network.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-022-09743-z</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5567-8519</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2022-09, Vol.51 (9), p.5074-5086
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2699831116
source SpringerLink (Online service)
subjects Characterization and Evaluation of Materials
Chemical sensors
Chemistry and Materials Science
Chlorides
Choline
Conductors
Crosslinking
Dissipation
Electrochemical analysis
Electrolytes
Electronics and Microelectronics
Eutectics
Flexible components
Gels
Instrumentation
Ion currents
Ion density (concentration)
Materials Science
Mechanical properties
Mixtures
Optical and Electronic Materials
Original Research Article
Polyacrylic acid
Recovery
Room temperature
Self-assembly
Solid State Physics
Solvents
Stretchability
Tensile strength
Toughness
Toxicity
Ureas
title Highly Stretchable, Self-Recoverable, and Conductive Double-Network Gels Containing Deep Eutectic Solvent for a Flexible Supercapacitor and Strain Sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A34%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Stretchable,%20Self-Recoverable,%20and%20Conductive%20Double-Network%20Gels%20Containing%20Deep%20Eutectic%20Solvent%20for%20a%20Flexible%20Supercapacitor%20and%20Strain%20Sensor&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Wu,%20Linlin&rft.date=2022-09-01&rft.volume=51&rft.issue=9&rft.spage=5074&rft.epage=5086&rft.pages=5074-5086&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-022-09743-z&rft_dat=%3Cproquest_cross%3E2699831116%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2699831116&rft_id=info:pmid/&rfr_iscdi=true