Highly Stretchable, Self-Recoverable, and Conductive Double-Network Gels Containing Deep Eutectic Solvent for a Flexible Supercapacitor and Strain Sensor
Due to the advantages of high ion density, low volatility, non-toxicity, and low cost, deep eutectic solvent gels have attracted widespread interest as novel solid-state ionic conductors for flexible devices. However, most of the currently developed deep eutectic solvent gels have weak mechanical pr...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2022-09, Vol.51 (9), p.5074-5086 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5086 |
---|---|
container_issue | 9 |
container_start_page | 5074 |
container_title | Journal of electronic materials |
container_volume | 51 |
creator | Wu, Linlin Zhou, Jiacheng Bu, Ximan Ge, Yongxin Gao, Yifeng Ma, Xiaofeng |
description | Due to the advantages of high ion density, low volatility, non-toxicity, and low cost, deep eutectic solvent gels have attracted widespread interest as novel solid-state ionic conductors for flexible devices. However, most of the currently developed deep eutectic solvent gels have weak mechanical properties, which seriously hinder their large-scale application. Herein, tough and ultrastretchable agar-based double-network deep eutectic solvent gels were successfully fabricated through the self-assembly of agar at a concentration range of 2% to 6% in a choline chloride/urea/water eutectic mixture (ChCl:urea:H
2
O = 1:2:1) by heating–cooling to form the first physical dissipative network and combination with the second Al
3+
-cross-linked hybrid poly(acrylic acid) (PAA) network. Such a double-network and multi-bond design endow the obtained 22 wt.% polymer scaffold-supported deep eutectic solvent gels with good mechanical properties (high tensile strength of 216 kPa and toughness of 2112 kJ m
−3
), stretchability (breaking strain of 1566%), good self-recovery ability (91% recovery efficiency after 600% strain deformation), and high room-temperature ionic conductivity of 2.1 mS cm
−1
. Furthermore, agar-based double network deep eutectic solvent gels were successfully used as stretchable gel electrolytes for the fabrication of electric double-layer capacitors and reliable flexible sensors with excellent electrochemical performance over a wide strain range.
Graphical Abstract
A nonvolatile agar-based double-network gel containing a deep eutectic solvent with high toughness of 2112 kJ m
−3
, high stretchability of 1595%, excellent recovery property, and ionic conductivity of 2.1 mS cm
−1
is fabricated for flexible electronics by the self-assembly of agar in a choline chloride/urea/water eutectic mixture (ChCl:urea:H
2
O = 1:2:1) to form the first physical dissipative network and combination with a second Al
3+
-cross-linked hybrid PAA network. |
doi_str_mv | 10.1007/s11664-022-09743-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2699831116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2699831116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-51b4d95f881433d35284a366ece458ef0d31b651e1b4d397e1ea60efa5f8072f3</originalsourceid><addsrcrecordid>eNp9kV9P2zAUxa0JpBXYF9iTJV5n8I1jN3lELaWT0JAoSLxZrnNTUkKc2U758032bXGXSXvjyda9v3OO5UPId-BnwPn0PAAolTOeZYyX01yw9y9kAjJdoFAPB2TChQImMyG_kqMQtpyDhAIm5M-y2Ty2b3QVPUb7aNYt_qArbGt2i9bt0I8T01V05rpqsLHZIZ27IY3ZL4wvzj_RK2zDfh1N0zXdhs4Re3o5REy0pSvX7rCLtHaeGrpo8bVJYroaevTW9MY2cb9JCekRySHFd8H5E3JYmzbgt3_nMblfXN7Nluz65urn7OKa2SwvI5OwzqtS1kUBuRCVkFmRG6EUWsxlgTWvBKyVBNxzopwioFEca5MkfJrV4picjr69d78HDFFv3eC7FKkzVZaFgPS3icpGynoXgsda9755Nv5NA9f7CvRYgU4V6L8V6PckEqMoJLjboP9v_YnqA_2JjB8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2699831116</pqid></control><display><type>article</type><title>Highly Stretchable, Self-Recoverable, and Conductive Double-Network Gels Containing Deep Eutectic Solvent for a Flexible Supercapacitor and Strain Sensor</title><source>SpringerLink (Online service)</source><creator>Wu, Linlin ; Zhou, Jiacheng ; Bu, Ximan ; Ge, Yongxin ; Gao, Yifeng ; Ma, Xiaofeng</creator><creatorcontrib>Wu, Linlin ; Zhou, Jiacheng ; Bu, Ximan ; Ge, Yongxin ; Gao, Yifeng ; Ma, Xiaofeng</creatorcontrib><description>Due to the advantages of high ion density, low volatility, non-toxicity, and low cost, deep eutectic solvent gels have attracted widespread interest as novel solid-state ionic conductors for flexible devices. However, most of the currently developed deep eutectic solvent gels have weak mechanical properties, which seriously hinder their large-scale application. Herein, tough and ultrastretchable agar-based double-network deep eutectic solvent gels were successfully fabricated through the self-assembly of agar at a concentration range of 2% to 6% in a choline chloride/urea/water eutectic mixture (ChCl:urea:H
2
O = 1:2:1) by heating–cooling to form the first physical dissipative network and combination with the second Al
3+
-cross-linked hybrid poly(acrylic acid) (PAA) network. Such a double-network and multi-bond design endow the obtained 22 wt.% polymer scaffold-supported deep eutectic solvent gels with good mechanical properties (high tensile strength of 216 kPa and toughness of 2112 kJ m
−3
), stretchability (breaking strain of 1566%), good self-recovery ability (91% recovery efficiency after 600% strain deformation), and high room-temperature ionic conductivity of 2.1 mS cm
−1
. Furthermore, agar-based double network deep eutectic solvent gels were successfully used as stretchable gel electrolytes for the fabrication of electric double-layer capacitors and reliable flexible sensors with excellent electrochemical performance over a wide strain range.
Graphical Abstract
A nonvolatile agar-based double-network gel containing a deep eutectic solvent with high toughness of 2112 kJ m
−3
, high stretchability of 1595%, excellent recovery property, and ionic conductivity of 2.1 mS cm
−1
is fabricated for flexible electronics by the self-assembly of agar in a choline chloride/urea/water eutectic mixture (ChCl:urea:H
2
O = 1:2:1) to form the first physical dissipative network and combination with a second Al
3+
-cross-linked hybrid PAA network.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-022-09743-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemical sensors ; Chemistry and Materials Science ; Chlorides ; Choline ; Conductors ; Crosslinking ; Dissipation ; Electrochemical analysis ; Electrolytes ; Electronics and Microelectronics ; Eutectics ; Flexible components ; Gels ; Instrumentation ; Ion currents ; Ion density (concentration) ; Materials Science ; Mechanical properties ; Mixtures ; Optical and Electronic Materials ; Original Research Article ; Polyacrylic acid ; Recovery ; Room temperature ; Self-assembly ; Solid State Physics ; Solvents ; Stretchability ; Tensile strength ; Toughness ; Toxicity ; Ureas</subject><ispartof>Journal of electronic materials, 2022-09, Vol.51 (9), p.5074-5086</ispartof><rights>The Minerals, Metals & Materials Society 2022</rights><rights>The Minerals, Metals & Materials Society 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-51b4d95f881433d35284a366ece458ef0d31b651e1b4d397e1ea60efa5f8072f3</citedby><cites>FETCH-LOGICAL-c249t-51b4d95f881433d35284a366ece458ef0d31b651e1b4d397e1ea60efa5f8072f3</cites><orcidid>0000-0002-5567-8519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-022-09743-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-022-09743-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Wu, Linlin</creatorcontrib><creatorcontrib>Zhou, Jiacheng</creatorcontrib><creatorcontrib>Bu, Ximan</creatorcontrib><creatorcontrib>Ge, Yongxin</creatorcontrib><creatorcontrib>Gao, Yifeng</creatorcontrib><creatorcontrib>Ma, Xiaofeng</creatorcontrib><title>Highly Stretchable, Self-Recoverable, and Conductive Double-Network Gels Containing Deep Eutectic Solvent for a Flexible Supercapacitor and Strain Sensor</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>Due to the advantages of high ion density, low volatility, non-toxicity, and low cost, deep eutectic solvent gels have attracted widespread interest as novel solid-state ionic conductors for flexible devices. However, most of the currently developed deep eutectic solvent gels have weak mechanical properties, which seriously hinder their large-scale application. Herein, tough and ultrastretchable agar-based double-network deep eutectic solvent gels were successfully fabricated through the self-assembly of agar at a concentration range of 2% to 6% in a choline chloride/urea/water eutectic mixture (ChCl:urea:H
2
O = 1:2:1) by heating–cooling to form the first physical dissipative network and combination with the second Al
3+
-cross-linked hybrid poly(acrylic acid) (PAA) network. Such a double-network and multi-bond design endow the obtained 22 wt.% polymer scaffold-supported deep eutectic solvent gels with good mechanical properties (high tensile strength of 216 kPa and toughness of 2112 kJ m
−3
), stretchability (breaking strain of 1566%), good self-recovery ability (91% recovery efficiency after 600% strain deformation), and high room-temperature ionic conductivity of 2.1 mS cm
−1
. Furthermore, agar-based double network deep eutectic solvent gels were successfully used as stretchable gel electrolytes for the fabrication of electric double-layer capacitors and reliable flexible sensors with excellent electrochemical performance over a wide strain range.
Graphical Abstract
A nonvolatile agar-based double-network gel containing a deep eutectic solvent with high toughness of 2112 kJ m
−3
, high stretchability of 1595%, excellent recovery property, and ionic conductivity of 2.1 mS cm
−1
is fabricated for flexible electronics by the self-assembly of agar in a choline chloride/urea/water eutectic mixture (ChCl:urea:H
2
O = 1:2:1) to form the first physical dissipative network and combination with a second Al
3+
-cross-linked hybrid PAA network.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemical sensors</subject><subject>Chemistry and Materials Science</subject><subject>Chlorides</subject><subject>Choline</subject><subject>Conductors</subject><subject>Crosslinking</subject><subject>Dissipation</subject><subject>Electrochemical analysis</subject><subject>Electrolytes</subject><subject>Electronics and Microelectronics</subject><subject>Eutectics</subject><subject>Flexible components</subject><subject>Gels</subject><subject>Instrumentation</subject><subject>Ion currents</subject><subject>Ion density (concentration)</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Mixtures</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Polyacrylic acid</subject><subject>Recovery</subject><subject>Room temperature</subject><subject>Self-assembly</subject><subject>Solid State Physics</subject><subject>Solvents</subject><subject>Stretchability</subject><subject>Tensile strength</subject><subject>Toughness</subject><subject>Toxicity</subject><subject>Ureas</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kV9P2zAUxa0JpBXYF9iTJV5n8I1jN3lELaWT0JAoSLxZrnNTUkKc2U758032bXGXSXvjyda9v3OO5UPId-BnwPn0PAAolTOeZYyX01yw9y9kAjJdoFAPB2TChQImMyG_kqMQtpyDhAIm5M-y2Ty2b3QVPUb7aNYt_qArbGt2i9bt0I8T01V05rpqsLHZIZ27IY3ZL4wvzj_RK2zDfh1N0zXdhs4Re3o5REy0pSvX7rCLtHaeGrpo8bVJYroaevTW9MY2cb9JCekRySHFd8H5E3JYmzbgt3_nMblfXN7Nluz65urn7OKa2SwvI5OwzqtS1kUBuRCVkFmRG6EUWsxlgTWvBKyVBNxzopwioFEca5MkfJrV4picjr69d78HDFFv3eC7FKkzVZaFgPS3icpGynoXgsda9755Nv5NA9f7CvRYgU4V6L8V6PckEqMoJLjboP9v_YnqA_2JjB8</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Wu, Linlin</creator><creator>Zhou, Jiacheng</creator><creator>Bu, Ximan</creator><creator>Ge, Yongxin</creator><creator>Gao, Yifeng</creator><creator>Ma, Xiaofeng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-5567-8519</orcidid></search><sort><creationdate>20220901</creationdate><title>Highly Stretchable, Self-Recoverable, and Conductive Double-Network Gels Containing Deep Eutectic Solvent for a Flexible Supercapacitor and Strain Sensor</title><author>Wu, Linlin ; Zhou, Jiacheng ; Bu, Ximan ; Ge, Yongxin ; Gao, Yifeng ; Ma, Xiaofeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-51b4d95f881433d35284a366ece458ef0d31b651e1b4d397e1ea60efa5f8072f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemical sensors</topic><topic>Chemistry and Materials Science</topic><topic>Chlorides</topic><topic>Choline</topic><topic>Conductors</topic><topic>Crosslinking</topic><topic>Dissipation</topic><topic>Electrochemical analysis</topic><topic>Electrolytes</topic><topic>Electronics and Microelectronics</topic><topic>Eutectics</topic><topic>Flexible components</topic><topic>Gels</topic><topic>Instrumentation</topic><topic>Ion currents</topic><topic>Ion density (concentration)</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Mixtures</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Polyacrylic acid</topic><topic>Recovery</topic><topic>Room temperature</topic><topic>Self-assembly</topic><topic>Solid State Physics</topic><topic>Solvents</topic><topic>Stretchability</topic><topic>Tensile strength</topic><topic>Toughness</topic><topic>Toxicity</topic><topic>Ureas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Linlin</creatorcontrib><creatorcontrib>Zhou, Jiacheng</creatorcontrib><creatorcontrib>Bu, Ximan</creatorcontrib><creatorcontrib>Ge, Yongxin</creatorcontrib><creatorcontrib>Gao, Yifeng</creatorcontrib><creatorcontrib>Ma, Xiaofeng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Linlin</au><au>Zhou, Jiacheng</au><au>Bu, Ximan</au><au>Ge, Yongxin</au><au>Gao, Yifeng</au><au>Ma, Xiaofeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Stretchable, Self-Recoverable, and Conductive Double-Network Gels Containing Deep Eutectic Solvent for a Flexible Supercapacitor and Strain Sensor</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>51</volume><issue>9</issue><spage>5074</spage><epage>5086</epage><pages>5074-5086</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Due to the advantages of high ion density, low volatility, non-toxicity, and low cost, deep eutectic solvent gels have attracted widespread interest as novel solid-state ionic conductors for flexible devices. However, most of the currently developed deep eutectic solvent gels have weak mechanical properties, which seriously hinder their large-scale application. Herein, tough and ultrastretchable agar-based double-network deep eutectic solvent gels were successfully fabricated through the self-assembly of agar at a concentration range of 2% to 6% in a choline chloride/urea/water eutectic mixture (ChCl:urea:H
2
O = 1:2:1) by heating–cooling to form the first physical dissipative network and combination with the second Al
3+
-cross-linked hybrid poly(acrylic acid) (PAA) network. Such a double-network and multi-bond design endow the obtained 22 wt.% polymer scaffold-supported deep eutectic solvent gels with good mechanical properties (high tensile strength of 216 kPa and toughness of 2112 kJ m
−3
), stretchability (breaking strain of 1566%), good self-recovery ability (91% recovery efficiency after 600% strain deformation), and high room-temperature ionic conductivity of 2.1 mS cm
−1
. Furthermore, agar-based double network deep eutectic solvent gels were successfully used as stretchable gel electrolytes for the fabrication of electric double-layer capacitors and reliable flexible sensors with excellent electrochemical performance over a wide strain range.
Graphical Abstract
A nonvolatile agar-based double-network gel containing a deep eutectic solvent with high toughness of 2112 kJ m
−3
, high stretchability of 1595%, excellent recovery property, and ionic conductivity of 2.1 mS cm
−1
is fabricated for flexible electronics by the self-assembly of agar in a choline chloride/urea/water eutectic mixture (ChCl:urea:H
2
O = 1:2:1) to form the first physical dissipative network and combination with a second Al
3+
-cross-linked hybrid PAA network.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-022-09743-z</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5567-8519</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2022-09, Vol.51 (9), p.5074-5086 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2699831116 |
source | SpringerLink (Online service) |
subjects | Characterization and Evaluation of Materials Chemical sensors Chemistry and Materials Science Chlorides Choline Conductors Crosslinking Dissipation Electrochemical analysis Electrolytes Electronics and Microelectronics Eutectics Flexible components Gels Instrumentation Ion currents Ion density (concentration) Materials Science Mechanical properties Mixtures Optical and Electronic Materials Original Research Article Polyacrylic acid Recovery Room temperature Self-assembly Solid State Physics Solvents Stretchability Tensile strength Toughness Toxicity Ureas |
title | Highly Stretchable, Self-Recoverable, and Conductive Double-Network Gels Containing Deep Eutectic Solvent for a Flexible Supercapacitor and Strain Sensor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A34%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Stretchable,%20Self-Recoverable,%20and%20Conductive%20Double-Network%20Gels%20Containing%20Deep%20Eutectic%20Solvent%20for%20a%20Flexible%20Supercapacitor%20and%20Strain%20Sensor&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Wu,%20Linlin&rft.date=2022-09-01&rft.volume=51&rft.issue=9&rft.spage=5074&rft.epage=5086&rft.pages=5074-5086&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-022-09743-z&rft_dat=%3Cproquest_cross%3E2699831116%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2699831116&rft_id=info:pmid/&rfr_iscdi=true |