Geometry-Independent Hypersonic BoundaryLayer Transition Prediction
One of the fundamental challenges of fielding and maneuvering a hypersonic vehicle is predicting the large changes in heat transfer and aerodynamic performance associated with the transition of the surface boundary-layer flow from laminar to turbulent during flight. Legacy methods for analyzing boun...
Gespeichert in:
Veröffentlicht in: | Johns Hopkins APL technical digest 2022-01, Vol.36 (2), p.202 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 202 |
container_title | Johns Hopkins APL technical digest |
container_volume | 36 |
creator | Araya, Daniel B Bitter, Neal P Alkandry, Hicham |
description | One of the fundamental challenges of fielding and maneuvering a hypersonic vehicle is predicting the large changes in heat transfer and aerodynamic performance associated with the transition of the surface boundary-layer flow from laminar to turbulent during flight. Legacy methods for analyzing boundary-layer transition are overly simplistic and do not account for the intricate flow patterns of modern vehicles with complex three-dimensional shapes. This article introduces work utilizing a novel methodology, known as input/output (I/O) analysis, recently applied to hypersonic flows. This methodology is completely free of geometric constraints and has significant potential to answer many of the open questions in transition analysis. The article presents examples of I/O analysis applied to hypersonic flow over a 7° half-angle sharp cone and to the Boundary Layer Transition (BOLT) flight experiment. The analysis uses computational tools that were built in collaboration with the University of Minnesota and VirtusAero as part of a Johns Hopkins University Applied Physics Laboratory (APL) independent research and development project. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2699743412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2699743412</sourcerecordid><originalsourceid>FETCH-proquest_journals_26997434123</originalsourceid><addsrcrecordid>eNqNissKwjAUBYMoWB__EHAdyKO1dmtRK7hw0X0J7RVSNKk36SJ_bwU_wM2ZgTkzkohCccYzxeck4TLnLJMiXZKV9z3nMhPqkJDyAu4FASO72g4GmMYGWsUB0DtrWnp0o-00xpuOgLRGbb0Jxll6R-hM-9UNWTz008P2xzXZnU91WbEB3XsEH5rejWin1Mh9UeSpSoVU_70-WN48Ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2699743412</pqid></control><display><type>article</type><title>Geometry-Independent Hypersonic BoundaryLayer Transition Prediction</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Araya, Daniel B ; Bitter, Neal P ; Alkandry, Hicham</creator><creatorcontrib>Araya, Daniel B ; Bitter, Neal P ; Alkandry, Hicham</creatorcontrib><description>One of the fundamental challenges of fielding and maneuvering a hypersonic vehicle is predicting the large changes in heat transfer and aerodynamic performance associated with the transition of the surface boundary-layer flow from laminar to turbulent during flight. Legacy methods for analyzing boundary-layer transition are overly simplistic and do not account for the intricate flow patterns of modern vehicles with complex three-dimensional shapes. This article introduces work utilizing a novel methodology, known as input/output (I/O) analysis, recently applied to hypersonic flows. This methodology is completely free of geometric constraints and has significant potential to answer many of the open questions in transition analysis. The article presents examples of I/O analysis applied to hypersonic flow over a 7° half-angle sharp cone and to the Boundary Layer Transition (BOLT) flight experiment. The analysis uses computational tools that were built in collaboration with the University of Minnesota and VirtusAero as part of a Johns Hopkins University Applied Physics Laboratory (APL) independent research and development project.</description><identifier>ISSN: 0270-5214</identifier><identifier>EISSN: 1930-0530</identifier><language>eng</language><publisher>Laurel: Johns Hopkins University</publisher><subject>Boundary layer flow ; Boundary layer transition ; Flow distribution ; Geometric constraints ; Hypersonic flow ; Hypersonic vehicles ; Input output analysis ; Laminar flow ; R&D ; Research & development ; Software</subject><ispartof>Johns Hopkins APL technical digest, 2022-01, Vol.36 (2), p.202</ispartof><rights>Copyright Johns Hopkins University 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Araya, Daniel B</creatorcontrib><creatorcontrib>Bitter, Neal P</creatorcontrib><creatorcontrib>Alkandry, Hicham</creatorcontrib><title>Geometry-Independent Hypersonic BoundaryLayer Transition Prediction</title><title>Johns Hopkins APL technical digest</title><description>One of the fundamental challenges of fielding and maneuvering a hypersonic vehicle is predicting the large changes in heat transfer and aerodynamic performance associated with the transition of the surface boundary-layer flow from laminar to turbulent during flight. Legacy methods for analyzing boundary-layer transition are overly simplistic and do not account for the intricate flow patterns of modern vehicles with complex three-dimensional shapes. This article introduces work utilizing a novel methodology, known as input/output (I/O) analysis, recently applied to hypersonic flows. This methodology is completely free of geometric constraints and has significant potential to answer many of the open questions in transition analysis. The article presents examples of I/O analysis applied to hypersonic flow over a 7° half-angle sharp cone and to the Boundary Layer Transition (BOLT) flight experiment. The analysis uses computational tools that were built in collaboration with the University of Minnesota and VirtusAero as part of a Johns Hopkins University Applied Physics Laboratory (APL) independent research and development project.</description><subject>Boundary layer flow</subject><subject>Boundary layer transition</subject><subject>Flow distribution</subject><subject>Geometric constraints</subject><subject>Hypersonic flow</subject><subject>Hypersonic vehicles</subject><subject>Input output analysis</subject><subject>Laminar flow</subject><subject>R&D</subject><subject>Research & development</subject><subject>Software</subject><issn>0270-5214</issn><issn>1930-0530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNissKwjAUBYMoWB__EHAdyKO1dmtRK7hw0X0J7RVSNKk36SJ_bwU_wM2ZgTkzkohCccYzxeck4TLnLJMiXZKV9z3nMhPqkJDyAu4FASO72g4GmMYGWsUB0DtrWnp0o-00xpuOgLRGbb0Jxll6R-hM-9UNWTz008P2xzXZnU91WbEB3XsEH5rejWin1Mh9UeSpSoVU_70-WN48Ww</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Araya, Daniel B</creator><creator>Bitter, Neal P</creator><creator>Alkandry, Hicham</creator><general>Johns Hopkins University</general><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20220101</creationdate><title>Geometry-Independent Hypersonic BoundaryLayer Transition Prediction</title><author>Araya, Daniel B ; Bitter, Neal P ; Alkandry, Hicham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26997434123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary layer flow</topic><topic>Boundary layer transition</topic><topic>Flow distribution</topic><topic>Geometric constraints</topic><topic>Hypersonic flow</topic><topic>Hypersonic vehicles</topic><topic>Input output analysis</topic><topic>Laminar flow</topic><topic>R&D</topic><topic>Research & development</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Araya, Daniel B</creatorcontrib><creatorcontrib>Bitter, Neal P</creatorcontrib><creatorcontrib>Alkandry, Hicham</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Johns Hopkins APL technical digest</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Araya, Daniel B</au><au>Bitter, Neal P</au><au>Alkandry, Hicham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometry-Independent Hypersonic BoundaryLayer Transition Prediction</atitle><jtitle>Johns Hopkins APL technical digest</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>36</volume><issue>2</issue><spage>202</spage><pages>202-</pages><issn>0270-5214</issn><eissn>1930-0530</eissn><abstract>One of the fundamental challenges of fielding and maneuvering a hypersonic vehicle is predicting the large changes in heat transfer and aerodynamic performance associated with the transition of the surface boundary-layer flow from laminar to turbulent during flight. Legacy methods for analyzing boundary-layer transition are overly simplistic and do not account for the intricate flow patterns of modern vehicles with complex three-dimensional shapes. This article introduces work utilizing a novel methodology, known as input/output (I/O) analysis, recently applied to hypersonic flows. This methodology is completely free of geometric constraints and has significant potential to answer many of the open questions in transition analysis. The article presents examples of I/O analysis applied to hypersonic flow over a 7° half-angle sharp cone and to the Boundary Layer Transition (BOLT) flight experiment. The analysis uses computational tools that were built in collaboration with the University of Minnesota and VirtusAero as part of a Johns Hopkins University Applied Physics Laboratory (APL) independent research and development project.</abstract><cop>Laurel</cop><pub>Johns Hopkins University</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-5214 |
ispartof | Johns Hopkins APL technical digest, 2022-01, Vol.36 (2), p.202 |
issn | 0270-5214 1930-0530 |
language | eng |
recordid | cdi_proquest_journals_2699743412 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Boundary layer flow Boundary layer transition Flow distribution Geometric constraints Hypersonic flow Hypersonic vehicles Input output analysis Laminar flow R&D Research & development Software |
title | Geometry-Independent Hypersonic BoundaryLayer Transition Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A12%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometry-Independent%20Hypersonic%20BoundaryLayer%20Transition%20Prediction&rft.jtitle=Johns%20Hopkins%20APL%20technical%20digest&rft.au=Araya,%20Daniel%20B&rft.date=2022-01-01&rft.volume=36&rft.issue=2&rft.spage=202&rft.pages=202-&rft.issn=0270-5214&rft.eissn=1930-0530&rft_id=info:doi/&rft_dat=%3Cproquest%3E2699743412%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2699743412&rft_id=info:pmid/&rfr_iscdi=true |