A survey on effects of adding explanations to recommender systems
Explainable recommendations become essential when we need to improve the performance of recommendations and to increase user confidence. Explanations are effective when end users can build a complete and correct mental representation of the inferential process of a recommender system. This paper pre...
Gespeichert in:
Veröffentlicht in: | Concurrency and computation 2022-09, Vol.34 (20), p.n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 20 |
container_start_page | |
container_title | Concurrency and computation |
container_volume | 34 |
creator | Vultureanu‐Albişi, Alexandra Bădică, Costin |
description | Explainable recommendations become essential when we need to improve the performance of recommendations and to increase user confidence. Explanations are effective when end users can build a complete and correct mental representation of the inferential process of a recommender system. This paper presents our view on the background regarding the implications of explainability applied to recommender systems. Our work contributes to the better understanding of the concept of explainable recommendation and it offers a broader picture of the development of further research in this field. Additionally, we contribute by providing a better understanding of the concept of human‐centered evaluation of explainable recommender systems. |
doi_str_mv | 10.1002/cpe.6834 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2699544332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2699544332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2934-f2a9ffb5878cd70d7d602f98f51f6d1b92deefcf918a5d00371fcc8cc168be913</originalsourceid><addsrcrecordid>eNp10M9LwzAUwPEgCs4p-CcEvHjpzI82bY5jzCkM9KDnkCXvScfa1KRT-9_bOfHm6b3Dh_fgS8g1ZzPOmLhzHcxUJfMTMuGFFBlTMj_924U6JxcpbRnjnEk-IfM5Tfv4AQMNLQVEcH2iAan1vm7fKHx1O9vavg5ton2gEVxoGmg9RJqG1EOTLskZ2l2Cq985Ja_3y5fFQ7Z-Wj0u5uvMCS3zDIXViJuiKivnS-ZLr5hAXWHBUXm-0cIDoEPNK1t4xmTJ0bnKOa6qDWgup-TmeLeL4X0PqTfbsI_t-NIIpXWR51KKUd0elYshpQhoulg3Ng6GM3MIZMZA5hBopNmRftY7GP51ZvG8_PHfEplnCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2699544332</pqid></control><display><type>article</type><title>A survey on effects of adding explanations to recommender systems</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Vultureanu‐Albişi, Alexandra ; Bădică, Costin</creator><creatorcontrib>Vultureanu‐Albişi, Alexandra ; Bădică, Costin</creatorcontrib><description>Explainable recommendations become essential when we need to improve the performance of recommendations and to increase user confidence. Explanations are effective when end users can build a complete and correct mental representation of the inferential process of a recommender system. This paper presents our view on the background regarding the implications of explainability applied to recommender systems. Our work contributes to the better understanding of the concept of explainable recommendation and it offers a broader picture of the development of further research in this field. Additionally, we contribute by providing a better understanding of the concept of human‐centered evaluation of explainable recommender systems.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.6834</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>End users ; explainable artificial intelligence ; human‐centered evaluation ; intelligent human‐interaction‐computer ; Recommender systems</subject><ispartof>Concurrency and computation, 2022-09, Vol.34 (20), p.n/a</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2934-f2a9ffb5878cd70d7d602f98f51f6d1b92deefcf918a5d00371fcc8cc168be913</citedby><cites>FETCH-LOGICAL-c2934-f2a9ffb5878cd70d7d602f98f51f6d1b92deefcf918a5d00371fcc8cc168be913</cites><orcidid>0000-0001-8480-9867 ; 0000-0001-7467-7231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.6834$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.6834$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Vultureanu‐Albişi, Alexandra</creatorcontrib><creatorcontrib>Bădică, Costin</creatorcontrib><title>A survey on effects of adding explanations to recommender systems</title><title>Concurrency and computation</title><description>Explainable recommendations become essential when we need to improve the performance of recommendations and to increase user confidence. Explanations are effective when end users can build a complete and correct mental representation of the inferential process of a recommender system. This paper presents our view on the background regarding the implications of explainability applied to recommender systems. Our work contributes to the better understanding of the concept of explainable recommendation and it offers a broader picture of the development of further research in this field. Additionally, we contribute by providing a better understanding of the concept of human‐centered evaluation of explainable recommender systems.</description><subject>End users</subject><subject>explainable artificial intelligence</subject><subject>human‐centered evaluation</subject><subject>intelligent human‐interaction‐computer</subject><subject>Recommender systems</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10M9LwzAUwPEgCs4p-CcEvHjpzI82bY5jzCkM9KDnkCXvScfa1KRT-9_bOfHm6b3Dh_fgS8g1ZzPOmLhzHcxUJfMTMuGFFBlTMj_924U6JxcpbRnjnEk-IfM5Tfv4AQMNLQVEcH2iAan1vm7fKHx1O9vavg5ton2gEVxoGmg9RJqG1EOTLskZ2l2Cq985Ja_3y5fFQ7Z-Wj0u5uvMCS3zDIXViJuiKivnS-ZLr5hAXWHBUXm-0cIDoEPNK1t4xmTJ0bnKOa6qDWgup-TmeLeL4X0PqTfbsI_t-NIIpXWR51KKUd0elYshpQhoulg3Ng6GM3MIZMZA5hBopNmRftY7GP51ZvG8_PHfEplnCw</recordid><startdate>20220910</startdate><enddate>20220910</enddate><creator>Vultureanu‐Albişi, Alexandra</creator><creator>Bădică, Costin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8480-9867</orcidid><orcidid>https://orcid.org/0000-0001-7467-7231</orcidid></search><sort><creationdate>20220910</creationdate><title>A survey on effects of adding explanations to recommender systems</title><author>Vultureanu‐Albişi, Alexandra ; Bădică, Costin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2934-f2a9ffb5878cd70d7d602f98f51f6d1b92deefcf918a5d00371fcc8cc168be913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>End users</topic><topic>explainable artificial intelligence</topic><topic>human‐centered evaluation</topic><topic>intelligent human‐interaction‐computer</topic><topic>Recommender systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vultureanu‐Albişi, Alexandra</creatorcontrib><creatorcontrib>Bădică, Costin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vultureanu‐Albişi, Alexandra</au><au>Bădică, Costin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A survey on effects of adding explanations to recommender systems</atitle><jtitle>Concurrency and computation</jtitle><date>2022-09-10</date><risdate>2022</risdate><volume>34</volume><issue>20</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Explainable recommendations become essential when we need to improve the performance of recommendations and to increase user confidence. Explanations are effective when end users can build a complete and correct mental representation of the inferential process of a recommender system. This paper presents our view on the background regarding the implications of explainability applied to recommender systems. Our work contributes to the better understanding of the concept of explainable recommendation and it offers a broader picture of the development of further research in this field. Additionally, we contribute by providing a better understanding of the concept of human‐centered evaluation of explainable recommender systems.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.6834</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8480-9867</orcidid><orcidid>https://orcid.org/0000-0001-7467-7231</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0626 |
ispartof | Concurrency and computation, 2022-09, Vol.34 (20), p.n/a |
issn | 1532-0626 1532-0634 |
language | eng |
recordid | cdi_proquest_journals_2699544332 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | End users explainable artificial intelligence human‐centered evaluation intelligent human‐interaction‐computer Recommender systems |
title | A survey on effects of adding explanations to recommender systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A57%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20survey%20on%20effects%20of%20adding%20explanations%20to%20recommender%20systems&rft.jtitle=Concurrency%20and%20computation&rft.au=Vultureanu%E2%80%90Albi%C5%9Fi,%20Alexandra&rft.date=2022-09-10&rft.volume=34&rft.issue=20&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.6834&rft_dat=%3Cproquest_cross%3E2699544332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2699544332&rft_id=info:pmid/&rfr_iscdi=true |