A survey on effects of adding explanations to recommender systems

Explainable recommendations become essential when we need to improve the performance of recommendations and to increase user confidence. Explanations are effective when end users can build a complete and correct mental representation of the inferential process of a recommender system. This paper pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concurrency and computation 2022-09, Vol.34 (20), p.n/a
Hauptverfasser: Vultureanu‐Albişi, Alexandra, Bădică, Costin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 20
container_start_page
container_title Concurrency and computation
container_volume 34
creator Vultureanu‐Albişi, Alexandra
Bădică, Costin
description Explainable recommendations become essential when we need to improve the performance of recommendations and to increase user confidence. Explanations are effective when end users can build a complete and correct mental representation of the inferential process of a recommender system. This paper presents our view on the background regarding the implications of explainability applied to recommender systems. Our work contributes to the better understanding of the concept of explainable recommendation and it offers a broader picture of the development of further research in this field. Additionally, we contribute by providing a better understanding of the concept of human‐centered evaluation of explainable recommender systems.
doi_str_mv 10.1002/cpe.6834
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2699544332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2699544332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2934-f2a9ffb5878cd70d7d602f98f51f6d1b92deefcf918a5d00371fcc8cc168be913</originalsourceid><addsrcrecordid>eNp10M9LwzAUwPEgCs4p-CcEvHjpzI82bY5jzCkM9KDnkCXvScfa1KRT-9_bOfHm6b3Dh_fgS8g1ZzPOmLhzHcxUJfMTMuGFFBlTMj_924U6JxcpbRnjnEk-IfM5Tfv4AQMNLQVEcH2iAan1vm7fKHx1O9vavg5ton2gEVxoGmg9RJqG1EOTLskZ2l2Cq985Ja_3y5fFQ7Z-Wj0u5uvMCS3zDIXViJuiKivnS-ZLr5hAXWHBUXm-0cIDoEPNK1t4xmTJ0bnKOa6qDWgup-TmeLeL4X0PqTfbsI_t-NIIpXWR51KKUd0elYshpQhoulg3Ng6GM3MIZMZA5hBopNmRftY7GP51ZvG8_PHfEplnCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2699544332</pqid></control><display><type>article</type><title>A survey on effects of adding explanations to recommender systems</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Vultureanu‐Albişi, Alexandra ; Bădică, Costin</creator><creatorcontrib>Vultureanu‐Albişi, Alexandra ; Bădică, Costin</creatorcontrib><description>Explainable recommendations become essential when we need to improve the performance of recommendations and to increase user confidence. Explanations are effective when end users can build a complete and correct mental representation of the inferential process of a recommender system. This paper presents our view on the background regarding the implications of explainability applied to recommender systems. Our work contributes to the better understanding of the concept of explainable recommendation and it offers a broader picture of the development of further research in this field. Additionally, we contribute by providing a better understanding of the concept of human‐centered evaluation of explainable recommender systems.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.6834</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>End users ; explainable artificial intelligence ; human‐centered evaluation ; intelligent human‐interaction‐computer ; Recommender systems</subject><ispartof>Concurrency and computation, 2022-09, Vol.34 (20), p.n/a</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2934-f2a9ffb5878cd70d7d602f98f51f6d1b92deefcf918a5d00371fcc8cc168be913</citedby><cites>FETCH-LOGICAL-c2934-f2a9ffb5878cd70d7d602f98f51f6d1b92deefcf918a5d00371fcc8cc168be913</cites><orcidid>0000-0001-8480-9867 ; 0000-0001-7467-7231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.6834$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.6834$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Vultureanu‐Albişi, Alexandra</creatorcontrib><creatorcontrib>Bădică, Costin</creatorcontrib><title>A survey on effects of adding explanations to recommender systems</title><title>Concurrency and computation</title><description>Explainable recommendations become essential when we need to improve the performance of recommendations and to increase user confidence. Explanations are effective when end users can build a complete and correct mental representation of the inferential process of a recommender system. This paper presents our view on the background regarding the implications of explainability applied to recommender systems. Our work contributes to the better understanding of the concept of explainable recommendation and it offers a broader picture of the development of further research in this field. Additionally, we contribute by providing a better understanding of the concept of human‐centered evaluation of explainable recommender systems.</description><subject>End users</subject><subject>explainable artificial intelligence</subject><subject>human‐centered evaluation</subject><subject>intelligent human‐interaction‐computer</subject><subject>Recommender systems</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10M9LwzAUwPEgCs4p-CcEvHjpzI82bY5jzCkM9KDnkCXvScfa1KRT-9_bOfHm6b3Dh_fgS8g1ZzPOmLhzHcxUJfMTMuGFFBlTMj_924U6JxcpbRnjnEk-IfM5Tfv4AQMNLQVEcH2iAan1vm7fKHx1O9vavg5ton2gEVxoGmg9RJqG1EOTLskZ2l2Cq985Ja_3y5fFQ7Z-Wj0u5uvMCS3zDIXViJuiKivnS-ZLr5hAXWHBUXm-0cIDoEPNK1t4xmTJ0bnKOa6qDWgup-TmeLeL4X0PqTfbsI_t-NIIpXWR51KKUd0elYshpQhoulg3Ng6GM3MIZMZA5hBopNmRftY7GP51ZvG8_PHfEplnCw</recordid><startdate>20220910</startdate><enddate>20220910</enddate><creator>Vultureanu‐Albişi, Alexandra</creator><creator>Bădică, Costin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8480-9867</orcidid><orcidid>https://orcid.org/0000-0001-7467-7231</orcidid></search><sort><creationdate>20220910</creationdate><title>A survey on effects of adding explanations to recommender systems</title><author>Vultureanu‐Albişi, Alexandra ; Bădică, Costin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2934-f2a9ffb5878cd70d7d602f98f51f6d1b92deefcf918a5d00371fcc8cc168be913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>End users</topic><topic>explainable artificial intelligence</topic><topic>human‐centered evaluation</topic><topic>intelligent human‐interaction‐computer</topic><topic>Recommender systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vultureanu‐Albişi, Alexandra</creatorcontrib><creatorcontrib>Bădică, Costin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vultureanu‐Albişi, Alexandra</au><au>Bădică, Costin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A survey on effects of adding explanations to recommender systems</atitle><jtitle>Concurrency and computation</jtitle><date>2022-09-10</date><risdate>2022</risdate><volume>34</volume><issue>20</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Explainable recommendations become essential when we need to improve the performance of recommendations and to increase user confidence. Explanations are effective when end users can build a complete and correct mental representation of the inferential process of a recommender system. This paper presents our view on the background regarding the implications of explainability applied to recommender systems. Our work contributes to the better understanding of the concept of explainable recommendation and it offers a broader picture of the development of further research in this field. Additionally, we contribute by providing a better understanding of the concept of human‐centered evaluation of explainable recommender systems.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.6834</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8480-9867</orcidid><orcidid>https://orcid.org/0000-0001-7467-7231</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and computation, 2022-09, Vol.34 (20), p.n/a
issn 1532-0626
1532-0634
language eng
recordid cdi_proquest_journals_2699544332
source Wiley Online Library Journals Frontfile Complete
subjects End users
explainable artificial intelligence
human‐centered evaluation
intelligent human‐interaction‐computer
Recommender systems
title A survey on effects of adding explanations to recommender systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A57%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20survey%20on%20effects%20of%20adding%20explanations%20to%20recommender%20systems&rft.jtitle=Concurrency%20and%20computation&rft.au=Vultureanu%E2%80%90Albi%C5%9Fi,%20Alexandra&rft.date=2022-09-10&rft.volume=34&rft.issue=20&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.6834&rft_dat=%3Cproquest_cross%3E2699544332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2699544332&rft_id=info:pmid/&rfr_iscdi=true