Autotuning PolyBench benchmarks with LLVM Clang/Polly loop optimization pragmas using Bayesian optimization
We develop a ytopt autotuning framework that leverages Bayesian optimization to explore the parameter space search and compare four different supervised learning methods within Bayesian optimization and evaluate their effectiveness. We select six of the most complex PolyBench benchmarks and apply th...
Gespeichert in:
Veröffentlicht in: | Concurrency and computation 2022-09, Vol.34 (20), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 20 |
container_start_page | |
container_title | Concurrency and computation |
container_volume | 34 |
creator | Wu, Xingfu Kruse, Michael Balaprakash, Prasanna Finkel, Hal Hovland, Paul Taylor, Valerie Hall, Mary |
description | We develop a ytopt autotuning framework that leverages Bayesian optimization to explore the parameter space search and compare four different supervised learning methods within Bayesian optimization and evaluate their effectiveness. We select six of the most complex PolyBench benchmarks and apply the newly developed LLVM Clang/Polly loop optimization pragmas to the benchmarks to optimize them. We then use the autotuning framework to optimize the pragma parameters to improve their performance. The experimental results show that our autotuning approach outperforms the other compiling methods to provide the smallest execution time for the benchmarks syr2k, 3mm, heat‐3d, lu, and covariance with two large datasets in 200 code evaluations for effectively searching the parameter spaces with up to 170,368 different configurations. We find that the Floyd–Warshall benchmark did not benefit from autotuning. To cope with this issue, we provide some compiler option solutions to improve the performance. Then we present loop autotuning without a user's knowledge using a simple mctree autotuning framework to further improve the performance of the Floyd–Warshall benchmark. We also extend the ytopt autotuning framework to tune a deep learning application. |
doi_str_mv | 10.1002/cpe.6683 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2699544312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2699544312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3273-537e5214372df7e3d04a4b567fbfcbd9e56de1a9c9f44a55a26cca695e912d453</originalsourceid><addsrcrecordid>eNp10E1Lw0AQBuBFFKxV8CcsePGSdr9jjm2oHxCxB_W6bDabdts0G7MJJf56EyOCBy8zc3iYYV4ArjGaYYTIXFdmJsQdPQETzCkJkKDs9Hcm4hxceL9DCGNE8QTsF23jmra05QauXdEtTam3MB3qQdV7D4-22cIkeX-GcaHKzbxHRQcL5yroqsYe7KdqrCthVavNQXnY-mHVUnXGW1X-MZfgLFeFN1c_fQre7lev8WOQvDw8xYsk0JSENOA0NJxgRkOS5aGhGWKKpVyEeZrrNIsMF5nBKtJRzpjiXBGhtRIRNxEmGeN0Cm7GvVXtPlrjG7lzbV32JyURUcQZo5j06nZUunbe1yaXVW37nzuJkRyilH2Ucoiyp8FIj7Yw3b9OxuvVt_8CaLl2fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2699544312</pqid></control><display><type>article</type><title>Autotuning PolyBench benchmarks with LLVM Clang/Polly loop optimization pragmas using Bayesian optimization</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Wu, Xingfu ; Kruse, Michael ; Balaprakash, Prasanna ; Finkel, Hal ; Hovland, Paul ; Taylor, Valerie ; Hall, Mary</creator><creatorcontrib>Wu, Xingfu ; Kruse, Michael ; Balaprakash, Prasanna ; Finkel, Hal ; Hovland, Paul ; Taylor, Valerie ; Hall, Mary</creatorcontrib><description>We develop a ytopt autotuning framework that leverages Bayesian optimization to explore the parameter space search and compare four different supervised learning methods within Bayesian optimization and evaluate their effectiveness. We select six of the most complex PolyBench benchmarks and apply the newly developed LLVM Clang/Polly loop optimization pragmas to the benchmarks to optimize them. We then use the autotuning framework to optimize the pragma parameters to improve their performance. The experimental results show that our autotuning approach outperforms the other compiling methods to provide the smallest execution time for the benchmarks syr2k, 3mm, heat‐3d, lu, and covariance with two large datasets in 200 code evaluations for effectively searching the parameter spaces with up to 170,368 different configurations. We find that the Floyd–Warshall benchmark did not benefit from autotuning. To cope with this issue, we provide some compiler option solutions to improve the performance. Then we present loop autotuning without a user's knowledge using a simple mctree autotuning framework to further improve the performance of the Floyd–Warshall benchmark. We also extend the ytopt autotuning framework to tune a deep learning application.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.6683</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>autotuning ; Bayesian analysis ; Benchmarks ; Clang ; Deep learning ; loop transformation ; Machine learning ; Optimization ; Parameters ; Performance enhancement ; Polly ; PolyBench benchmarks</subject><ispartof>Concurrency and computation, 2022-09, Vol.34 (20), p.n/a</ispartof><rights>2021 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3273-537e5214372df7e3d04a4b567fbfcbd9e56de1a9c9f44a55a26cca695e912d453</citedby><cites>FETCH-LOGICAL-c3273-537e5214372df7e3d04a4b567fbfcbd9e56de1a9c9f44a55a26cca695e912d453</cites><orcidid>0000-0001-8150-5171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.6683$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.6683$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Wu, Xingfu</creatorcontrib><creatorcontrib>Kruse, Michael</creatorcontrib><creatorcontrib>Balaprakash, Prasanna</creatorcontrib><creatorcontrib>Finkel, Hal</creatorcontrib><creatorcontrib>Hovland, Paul</creatorcontrib><creatorcontrib>Taylor, Valerie</creatorcontrib><creatorcontrib>Hall, Mary</creatorcontrib><title>Autotuning PolyBench benchmarks with LLVM Clang/Polly loop optimization pragmas using Bayesian optimization</title><title>Concurrency and computation</title><description>We develop a ytopt autotuning framework that leverages Bayesian optimization to explore the parameter space search and compare four different supervised learning methods within Bayesian optimization and evaluate their effectiveness. We select six of the most complex PolyBench benchmarks and apply the newly developed LLVM Clang/Polly loop optimization pragmas to the benchmarks to optimize them. We then use the autotuning framework to optimize the pragma parameters to improve their performance. The experimental results show that our autotuning approach outperforms the other compiling methods to provide the smallest execution time for the benchmarks syr2k, 3mm, heat‐3d, lu, and covariance with two large datasets in 200 code evaluations for effectively searching the parameter spaces with up to 170,368 different configurations. We find that the Floyd–Warshall benchmark did not benefit from autotuning. To cope with this issue, we provide some compiler option solutions to improve the performance. Then we present loop autotuning without a user's knowledge using a simple mctree autotuning framework to further improve the performance of the Floyd–Warshall benchmark. We also extend the ytopt autotuning framework to tune a deep learning application.</description><subject>autotuning</subject><subject>Bayesian analysis</subject><subject>Benchmarks</subject><subject>Clang</subject><subject>Deep learning</subject><subject>loop transformation</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Performance enhancement</subject><subject>Polly</subject><subject>PolyBench benchmarks</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10E1Lw0AQBuBFFKxV8CcsePGSdr9jjm2oHxCxB_W6bDabdts0G7MJJf56EyOCBy8zc3iYYV4ArjGaYYTIXFdmJsQdPQETzCkJkKDs9Hcm4hxceL9DCGNE8QTsF23jmra05QauXdEtTam3MB3qQdV7D4-22cIkeX-GcaHKzbxHRQcL5yroqsYe7KdqrCthVavNQXnY-mHVUnXGW1X-MZfgLFeFN1c_fQre7lev8WOQvDw8xYsk0JSENOA0NJxgRkOS5aGhGWKKpVyEeZrrNIsMF5nBKtJRzpjiXBGhtRIRNxEmGeN0Cm7GvVXtPlrjG7lzbV32JyURUcQZo5j06nZUunbe1yaXVW37nzuJkRyilH2Ucoiyp8FIj7Yw3b9OxuvVt_8CaLl2fw</recordid><startdate>20220910</startdate><enddate>20220910</enddate><creator>Wu, Xingfu</creator><creator>Kruse, Michael</creator><creator>Balaprakash, Prasanna</creator><creator>Finkel, Hal</creator><creator>Hovland, Paul</creator><creator>Taylor, Valerie</creator><creator>Hall, Mary</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8150-5171</orcidid></search><sort><creationdate>20220910</creationdate><title>Autotuning PolyBench benchmarks with LLVM Clang/Polly loop optimization pragmas using Bayesian optimization</title><author>Wu, Xingfu ; Kruse, Michael ; Balaprakash, Prasanna ; Finkel, Hal ; Hovland, Paul ; Taylor, Valerie ; Hall, Mary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3273-537e5214372df7e3d04a4b567fbfcbd9e56de1a9c9f44a55a26cca695e912d453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>autotuning</topic><topic>Bayesian analysis</topic><topic>Benchmarks</topic><topic>Clang</topic><topic>Deep learning</topic><topic>loop transformation</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Performance enhancement</topic><topic>Polly</topic><topic>PolyBench benchmarks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xingfu</creatorcontrib><creatorcontrib>Kruse, Michael</creatorcontrib><creatorcontrib>Balaprakash, Prasanna</creatorcontrib><creatorcontrib>Finkel, Hal</creatorcontrib><creatorcontrib>Hovland, Paul</creatorcontrib><creatorcontrib>Taylor, Valerie</creatorcontrib><creatorcontrib>Hall, Mary</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xingfu</au><au>Kruse, Michael</au><au>Balaprakash, Prasanna</au><au>Finkel, Hal</au><au>Hovland, Paul</au><au>Taylor, Valerie</au><au>Hall, Mary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autotuning PolyBench benchmarks with LLVM Clang/Polly loop optimization pragmas using Bayesian optimization</atitle><jtitle>Concurrency and computation</jtitle><date>2022-09-10</date><risdate>2022</risdate><volume>34</volume><issue>20</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>We develop a ytopt autotuning framework that leverages Bayesian optimization to explore the parameter space search and compare four different supervised learning methods within Bayesian optimization and evaluate their effectiveness. We select six of the most complex PolyBench benchmarks and apply the newly developed LLVM Clang/Polly loop optimization pragmas to the benchmarks to optimize them. We then use the autotuning framework to optimize the pragma parameters to improve their performance. The experimental results show that our autotuning approach outperforms the other compiling methods to provide the smallest execution time for the benchmarks syr2k, 3mm, heat‐3d, lu, and covariance with two large datasets in 200 code evaluations for effectively searching the parameter spaces with up to 170,368 different configurations. We find that the Floyd–Warshall benchmark did not benefit from autotuning. To cope with this issue, we provide some compiler option solutions to improve the performance. Then we present loop autotuning without a user's knowledge using a simple mctree autotuning framework to further improve the performance of the Floyd–Warshall benchmark. We also extend the ytopt autotuning framework to tune a deep learning application.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.6683</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-8150-5171</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0626 |
ispartof | Concurrency and computation, 2022-09, Vol.34 (20), p.n/a |
issn | 1532-0626 1532-0634 |
language | eng |
recordid | cdi_proquest_journals_2699544312 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | autotuning Bayesian analysis Benchmarks Clang Deep learning loop transformation Machine learning Optimization Parameters Performance enhancement Polly PolyBench benchmarks |
title | Autotuning PolyBench benchmarks with LLVM Clang/Polly loop optimization pragmas using Bayesian optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A56%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autotuning%20PolyBench%20benchmarks%20with%20LLVM%20Clang/Polly%20loop%20optimization%20pragmas%20using%20Bayesian%20optimization&rft.jtitle=Concurrency%20and%20computation&rft.au=Wu,%20Xingfu&rft.date=2022-09-10&rft.volume=34&rft.issue=20&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.6683&rft_dat=%3Cproquest_cross%3E2699544312%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2699544312&rft_id=info:pmid/&rfr_iscdi=true |