Beat Wash-Sale Tax with Multigraph Convolutional Neural Networks Based Trading Strategy

Stock forecasting is a method that uses historical data and mathematical models to predict the future movement of stocks. It gives an indication of how much profit or loss an investment can make. The use of machine learning for stock forecasting has been widely. But many studies do not take into acc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Security and communication networks 2022-07, Vol.2022, p.1-18
Hauptverfasser: Wang, Qinan, Jiang, Weiwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue
container_start_page 1
container_title Security and communication networks
container_volume 2022
creator Wang, Qinan
Jiang, Weiwei
description Stock forecasting is a method that uses historical data and mathematical models to predict the future movement of stocks. It gives an indication of how much profit or loss an investment can make. The use of machine learning for stock forecasting has been widely. But many studies do not take into account correlations between stocks and likelihood that frequent trading could trigger the wash-sale tax rule. Higher taxes cost could offset positive profits. In this study, we proposed a framework based on graph convolutional network, extracting the interdependencies of stocks to increase the prediction accuracy to 62%. Also, we included tax in the calculation of overall net income in simulated trading and tried different constraints on trades to see whether our new model can generate profits high enough to cover the required taxes. The results with 795.5% net return for two years validated the effectiveness of our model and trading strategy.
doi_str_mv 10.1155/2022/3598285
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2699541992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2699541992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-9f4916bef10d13d2b63ba9afc4d7bd25021c2995fd09bb8de8409828ea0c13e53</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqWw8QMsMUKo7dhpPNKqfEgFhhZ1jC6x07iEuNgOpf-elFaMTO8Nz3u6exC6pOSWUiEGjDA2iIVMWSqOUI_KWEaEMnb8N1N-is68XxGSUD7kPbQYaQh4Ab6KZlBrPIdvvDGhws9tHczSwbrCY9t82boNxjZQ4xfdut8IG-vePR6B1wrPHSjTLPEsOAh6uT1HJyXUXl8cso_e7ifz8WM0fX14Gt9No4IlwxDJkkua5LqkRNFYsTyJc5BQFlwNc8UEYbRgUopSEZnnqdIpJ7v3NJCCxlrEfXS137t29rPVPmQr27ruTp-xpCtyKiXrqJs9VTjrvdNltnbmA9w2oyTbqct26rKDug6_3uOVaRRszP_0DzWQbb4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2699541992</pqid></control><display><type>article</type><title>Beat Wash-Sale Tax with Multigraph Convolutional Neural Networks Based Trading Strategy</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Wang, Qinan ; Jiang, Weiwei</creator><contributor>Khan, Mohammad Ayoub ; Mohammad Ayoub Khan</contributor><creatorcontrib>Wang, Qinan ; Jiang, Weiwei ; Khan, Mohammad Ayoub ; Mohammad Ayoub Khan</creatorcontrib><description>Stock forecasting is a method that uses historical data and mathematical models to predict the future movement of stocks. It gives an indication of how much profit or loss an investment can make. The use of machine learning for stock forecasting has been widely. But many studies do not take into account correlations between stocks and likelihood that frequent trading could trigger the wash-sale tax rule. Higher taxes cost could offset positive profits. In this study, we proposed a framework based on graph convolutional network, extracting the interdependencies of stocks to increase the prediction accuracy to 62%. Also, we included tax in the calculation of overall net income in simulated trading and tried different constraints on trades to see whether our new model can generate profits high enough to cover the required taxes. The results with 795.5% net return for two years validated the effectiveness of our model and trading strategy.</description><identifier>ISSN: 1939-0114</identifier><identifier>EISSN: 1939-0122</identifier><identifier>DOI: 10.1155/2022/3598285</identifier><language>eng</language><publisher>London: Hindawi</publisher><subject>Algorithms ; Artificial intelligence ; Artificial neural networks ; Automation ; Constraint modelling ; Discriminant analysis ; Forecasting ; Machine learning ; Neural networks ; Profits ; Regression analysis ; Stock exchanges ; Support vector machines ; Taxes</subject><ispartof>Security and communication networks, 2022-07, Vol.2022, p.1-18</ispartof><rights>Copyright © 2022 Qinan Wang and Weiwei Jiang.</rights><rights>Copyright © 2022 Qinan Wang and Weiwei Jiang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-9f4916bef10d13d2b63ba9afc4d7bd25021c2995fd09bb8de8409828ea0c13e53</citedby><cites>FETCH-LOGICAL-c267t-9f4916bef10d13d2b63ba9afc4d7bd25021c2995fd09bb8de8409828ea0c13e53</cites><orcidid>0000-0002-1653-5232</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Khan, Mohammad Ayoub</contributor><contributor>Mohammad Ayoub Khan</contributor><creatorcontrib>Wang, Qinan</creatorcontrib><creatorcontrib>Jiang, Weiwei</creatorcontrib><title>Beat Wash-Sale Tax with Multigraph Convolutional Neural Networks Based Trading Strategy</title><title>Security and communication networks</title><description>Stock forecasting is a method that uses historical data and mathematical models to predict the future movement of stocks. It gives an indication of how much profit or loss an investment can make. The use of machine learning for stock forecasting has been widely. But many studies do not take into account correlations between stocks and likelihood that frequent trading could trigger the wash-sale tax rule. Higher taxes cost could offset positive profits. In this study, we proposed a framework based on graph convolutional network, extracting the interdependencies of stocks to increase the prediction accuracy to 62%. Also, we included tax in the calculation of overall net income in simulated trading and tried different constraints on trades to see whether our new model can generate profits high enough to cover the required taxes. The results with 795.5% net return for two years validated the effectiveness of our model and trading strategy.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Constraint modelling</subject><subject>Discriminant analysis</subject><subject>Forecasting</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Profits</subject><subject>Regression analysis</subject><subject>Stock exchanges</subject><subject>Support vector machines</subject><subject>Taxes</subject><issn>1939-0114</issn><issn>1939-0122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD1PwzAQhi0EEqWw8QMsMUKo7dhpPNKqfEgFhhZ1jC6x07iEuNgOpf-elFaMTO8Nz3u6exC6pOSWUiEGjDA2iIVMWSqOUI_KWEaEMnb8N1N-is68XxGSUD7kPbQYaQh4Ab6KZlBrPIdvvDGhws9tHczSwbrCY9t82boNxjZQ4xfdut8IG-vePR6B1wrPHSjTLPEsOAh6uT1HJyXUXl8cso_e7ifz8WM0fX14Gt9No4IlwxDJkkua5LqkRNFYsTyJc5BQFlwNc8UEYbRgUopSEZnnqdIpJ7v3NJCCxlrEfXS137t29rPVPmQr27ruTp-xpCtyKiXrqJs9VTjrvdNltnbmA9w2oyTbqct26rKDug6_3uOVaRRszP_0DzWQbb4</recordid><startdate>20220730</startdate><enddate>20220730</enddate><creator>Wang, Qinan</creator><creator>Jiang, Weiwei</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-1653-5232</orcidid></search><sort><creationdate>20220730</creationdate><title>Beat Wash-Sale Tax with Multigraph Convolutional Neural Networks Based Trading Strategy</title><author>Wang, Qinan ; Jiang, Weiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-9f4916bef10d13d2b63ba9afc4d7bd25021c2995fd09bb8de8409828ea0c13e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Constraint modelling</topic><topic>Discriminant analysis</topic><topic>Forecasting</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Profits</topic><topic>Regression analysis</topic><topic>Stock exchanges</topic><topic>Support vector machines</topic><topic>Taxes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qinan</creatorcontrib><creatorcontrib>Jiang, Weiwei</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Security and communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qinan</au><au>Jiang, Weiwei</au><au>Khan, Mohammad Ayoub</au><au>Mohammad Ayoub Khan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beat Wash-Sale Tax with Multigraph Convolutional Neural Networks Based Trading Strategy</atitle><jtitle>Security and communication networks</jtitle><date>2022-07-30</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>1939-0114</issn><eissn>1939-0122</eissn><abstract>Stock forecasting is a method that uses historical data and mathematical models to predict the future movement of stocks. It gives an indication of how much profit or loss an investment can make. The use of machine learning for stock forecasting has been widely. But many studies do not take into account correlations between stocks and likelihood that frequent trading could trigger the wash-sale tax rule. Higher taxes cost could offset positive profits. In this study, we proposed a framework based on graph convolutional network, extracting the interdependencies of stocks to increase the prediction accuracy to 62%. Also, we included tax in the calculation of overall net income in simulated trading and tried different constraints on trades to see whether our new model can generate profits high enough to cover the required taxes. The results with 795.5% net return for two years validated the effectiveness of our model and trading strategy.</abstract><cop>London</cop><pub>Hindawi</pub><doi>10.1155/2022/3598285</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1653-5232</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-0114
ispartof Security and communication networks, 2022-07, Vol.2022, p.1-18
issn 1939-0114
1939-0122
language eng
recordid cdi_proquest_journals_2699541992
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection
subjects Algorithms
Artificial intelligence
Artificial neural networks
Automation
Constraint modelling
Discriminant analysis
Forecasting
Machine learning
Neural networks
Profits
Regression analysis
Stock exchanges
Support vector machines
Taxes
title Beat Wash-Sale Tax with Multigraph Convolutional Neural Networks Based Trading Strategy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A18%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beat%20Wash-Sale%20Tax%20with%20Multigraph%20Convolutional%20Neural%20Networks%20Based%20Trading%20Strategy&rft.jtitle=Security%20and%20communication%20networks&rft.au=Wang,%20Qinan&rft.date=2022-07-30&rft.volume=2022&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=1939-0114&rft.eissn=1939-0122&rft_id=info:doi/10.1155/2022/3598285&rft_dat=%3Cproquest_cross%3E2699541992%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2699541992&rft_id=info:pmid/&rfr_iscdi=true