Optimal transport maps on Alexandrov spaces revisited
We give an alternative proof for the fact that in n -dimensional Alexandrov spaces with curvature bounded below there exists a unique optimal transport plan from any purely ( n - 1 ) -unrectifiable starting measure, and that this plan is induced by an optimal map. Our proof does not rely on the full...
Gespeichert in:
Veröffentlicht in: | Manuscripta mathematica 2022-09, Vol.169 (1-2), p.1-18 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give an alternative proof for the fact that in
n
-dimensional Alexandrov spaces with curvature bounded below there exists a unique optimal transport plan from any purely
(
n
-
1
)
-unrectifiable starting measure, and that this plan is induced by an optimal map. Our proof does not rely on the full optimality of a given plan but rather on the
c
-monotonicity, thus we obtain the existence of transport maps for wider class of (possibly non-optimal) transport plans. |
---|---|
ISSN: | 0025-2611 1432-1785 |
DOI: | 10.1007/s00229-021-01333-3 |