Multiple-trait model through Bayesian inference applied to flood-irrigated rice (Oryza sativa L)
The objectives of this study were to use a bayesian multi-trait model, estimate genetic parameters, and select flood-irrigated rice genotypes with better genetic potentials in different evaluation environments. For this, twenty-five rice genotypes and six traits belonging to the flood-irrigated rice...
Gespeichert in:
Veröffentlicht in: | Euphytica 2022-09, Vol.218 (9), Article 124 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Euphytica |
container_volume | 218 |
creator | da Silva Junior, Antônio Carlos de Castro Sant’Anna, Isabela Peixoto, Marco Antônio Torres, Lívia Gomes Silva Siqueira, Michele Jorge da Costa, Weverton Gomes Azevedo, Camila Ferreira Soares, Plínio César Cruz, Cosme Damião |
description | The objectives of this study were to use a bayesian multi-trait model, estimate genetic parameters, and select flood-irrigated rice genotypes with better genetic potentials in different evaluation environments. For this, twenty-five rice genotypes and six traits belonging to the flood-irrigated rice improvement program were evaluated. The experimental design used in all experiments was a randomized block design with three replications. The Monte Carlo Markov Chain algorithm estimated genetic parameters and genetic values. The grain thickness trait was considered highly heritable, with a credibility interval ranging from:
h
2
: 0.9480; 0.9440; 0.8610, in environments 1, 2, and 3, respectively. The grain yields showed a weak correlation estimate between grain thickness and 100-grain weight, in all environments, with a credibility interval ranging from (
ρ
= 0.5477; 0.5762; 0.5618 and 0.5973; 0.5247; 0.5632, grain thickness and 100-grain weight, in environments 1, 2, and 3, respectively). The Bayesian multi-trait model proved to be an adequate strategy for the genetic improvement of flood-irrigated. |
doi_str_mv | 10.1007/s10681-022-03077-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2699221750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A712875629</galeid><sourcerecordid>A712875629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-70e9fc8e7a5f66cf0c03a217d10d1c095b207357f675a17ac1b32f885bb794633</originalsourceid><addsrcrecordid>eNp9kE1PJCEQhonRxPHjD3gi8bJ7QAsYoPvoGr-SMV70jAwNI6an6QXGOP560d5kb6YOlVS9T328CJ1QOKMA6jxTkA0lwBgBDkqR9x00o0JxIkDCLpoB0DlhnMt9dJDzKwC0SsAMPd9v-hLG3pGSTCh4HTvX4_KS4mb1gv-YrcvBDDgM3iU3WIfNOPbBdbhE7PsYOxJSCitTaimF2v_1kLYfBmdTwpvBi99HaM-bPrvjf_kQPV1fPV7eksXDzd3lxYLYObBCFLjW28YpI7yU1oMFbhhVHYWOWmjFkoHiQnmphKHKWLrkzDeNWC5VO5ecH6LTae6Y4t-Ny0W_xk0a6krNZNuyOktAVZ1NqpXpna5fxfq2rdG5dbBxcD7U-oWirFFCsrYCbAJsijkn5_WYwtqkraagv6zXk_W6Wq-_rdfvFeITlKt4WLn0_5YfqE9isYal</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2699221750</pqid></control><display><type>article</type><title>Multiple-trait model through Bayesian inference applied to flood-irrigated rice (Oryza sativa L)</title><source>SpringerLink Journals</source><creator>da Silva Junior, Antônio Carlos ; de Castro Sant’Anna, Isabela ; Peixoto, Marco Antônio ; Torres, Lívia Gomes ; Silva Siqueira, Michele Jorge ; da Costa, Weverton Gomes ; Azevedo, Camila Ferreira ; Soares, Plínio César ; Cruz, Cosme Damião</creator><creatorcontrib>da Silva Junior, Antônio Carlos ; de Castro Sant’Anna, Isabela ; Peixoto, Marco Antônio ; Torres, Lívia Gomes ; Silva Siqueira, Michele Jorge ; da Costa, Weverton Gomes ; Azevedo, Camila Ferreira ; Soares, Plínio César ; Cruz, Cosme Damião</creatorcontrib><description>The objectives of this study were to use a bayesian multi-trait model, estimate genetic parameters, and select flood-irrigated rice genotypes with better genetic potentials in different evaluation environments. For this, twenty-five rice genotypes and six traits belonging to the flood-irrigated rice improvement program were evaluated. The experimental design used in all experiments was a randomized block design with three replications. The Monte Carlo Markov Chain algorithm estimated genetic parameters and genetic values. The grain thickness trait was considered highly heritable, with a credibility interval ranging from:
h
2
: 0.9480; 0.9440; 0.8610, in environments 1, 2, and 3, respectively. The grain yields showed a weak correlation estimate between grain thickness and 100-grain weight, in all environments, with a credibility interval ranging from (
ρ
= 0.5477; 0.5762; 0.5618 and 0.5973; 0.5247; 0.5632, grain thickness and 100-grain weight, in environments 1, 2, and 3, respectively). The Bayesian multi-trait model proved to be an adequate strategy for the genetic improvement of flood-irrigated.</description><identifier>ISSN: 0014-2336</identifier><identifier>EISSN: 1573-5060</identifier><identifier>DOI: 10.1007/s10681-022-03077-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Analysis ; Bayesian analysis ; Biomedical and Life Sciences ; Biotechnology ; Credibility ; Design of experiments ; Experimental design ; Experiments ; Floods ; Genotypes ; Grain ; Humidity ; Life Sciences ; Markov analysis ; Markov chains ; Markov processes ; Mathematical models ; Oryza sativa ; Parameter estimation ; Parameters ; Plant Genetics and Genomics ; Plant Pathology ; Plant Physiology ; Plant Sciences ; Rice ; Statistical inference ; Thickness</subject><ispartof>Euphytica, 2022-09, Vol.218 (9), Article 124</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-70e9fc8e7a5f66cf0c03a217d10d1c095b207357f675a17ac1b32f885bb794633</citedby><cites>FETCH-LOGICAL-c402t-70e9fc8e7a5f66cf0c03a217d10d1c095b207357f675a17ac1b32f885bb794633</cites><orcidid>0000-0002-4200-6182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10681-022-03077-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10681-022-03077-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>da Silva Junior, Antônio Carlos</creatorcontrib><creatorcontrib>de Castro Sant’Anna, Isabela</creatorcontrib><creatorcontrib>Peixoto, Marco Antônio</creatorcontrib><creatorcontrib>Torres, Lívia Gomes</creatorcontrib><creatorcontrib>Silva Siqueira, Michele Jorge</creatorcontrib><creatorcontrib>da Costa, Weverton Gomes</creatorcontrib><creatorcontrib>Azevedo, Camila Ferreira</creatorcontrib><creatorcontrib>Soares, Plínio César</creatorcontrib><creatorcontrib>Cruz, Cosme Damião</creatorcontrib><title>Multiple-trait model through Bayesian inference applied to flood-irrigated rice (Oryza sativa L)</title><title>Euphytica</title><addtitle>Euphytica</addtitle><description>The objectives of this study were to use a bayesian multi-trait model, estimate genetic parameters, and select flood-irrigated rice genotypes with better genetic potentials in different evaluation environments. For this, twenty-five rice genotypes and six traits belonging to the flood-irrigated rice improvement program were evaluated. The experimental design used in all experiments was a randomized block design with three replications. The Monte Carlo Markov Chain algorithm estimated genetic parameters and genetic values. The grain thickness trait was considered highly heritable, with a credibility interval ranging from:
h
2
: 0.9480; 0.9440; 0.8610, in environments 1, 2, and 3, respectively. The grain yields showed a weak correlation estimate between grain thickness and 100-grain weight, in all environments, with a credibility interval ranging from (
ρ
= 0.5477; 0.5762; 0.5618 and 0.5973; 0.5247; 0.5632, grain thickness and 100-grain weight, in environments 1, 2, and 3, respectively). The Bayesian multi-trait model proved to be an adequate strategy for the genetic improvement of flood-irrigated.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Bayesian analysis</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Credibility</subject><subject>Design of experiments</subject><subject>Experimental design</subject><subject>Experiments</subject><subject>Floods</subject><subject>Genotypes</subject><subject>Grain</subject><subject>Humidity</subject><subject>Life Sciences</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Markov processes</subject><subject>Mathematical models</subject><subject>Oryza sativa</subject><subject>Parameter estimation</subject><subject>Parameters</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Pathology</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Rice</subject><subject>Statistical inference</subject><subject>Thickness</subject><issn>0014-2336</issn><issn>1573-5060</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1PJCEQhonRxPHjD3gi8bJ7QAsYoPvoGr-SMV70jAwNI6an6QXGOP560d5kb6YOlVS9T328CJ1QOKMA6jxTkA0lwBgBDkqR9x00o0JxIkDCLpoB0DlhnMt9dJDzKwC0SsAMPd9v-hLG3pGSTCh4HTvX4_KS4mb1gv-YrcvBDDgM3iU3WIfNOPbBdbhE7PsYOxJSCitTaimF2v_1kLYfBmdTwpvBi99HaM-bPrvjf_kQPV1fPV7eksXDzd3lxYLYObBCFLjW28YpI7yU1oMFbhhVHYWOWmjFkoHiQnmphKHKWLrkzDeNWC5VO5ecH6LTae6Y4t-Ny0W_xk0a6krNZNuyOktAVZ1NqpXpna5fxfq2rdG5dbBxcD7U-oWirFFCsrYCbAJsijkn5_WYwtqkraagv6zXk_W6Wq-_rdfvFeITlKt4WLn0_5YfqE9isYal</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>da Silva Junior, Antônio Carlos</creator><creator>de Castro Sant’Anna, Isabela</creator><creator>Peixoto, Marco Antônio</creator><creator>Torres, Lívia Gomes</creator><creator>Silva Siqueira, Michele Jorge</creator><creator>da Costa, Weverton Gomes</creator><creator>Azevedo, Camila Ferreira</creator><creator>Soares, Plínio César</creator><creator>Cruz, Cosme Damião</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TM</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-4200-6182</orcidid></search><sort><creationdate>20220901</creationdate><title>Multiple-trait model through Bayesian inference applied to flood-irrigated rice (Oryza sativa L)</title><author>da Silva Junior, Antônio Carlos ; de Castro Sant’Anna, Isabela ; Peixoto, Marco Antônio ; Torres, Lívia Gomes ; Silva Siqueira, Michele Jorge ; da Costa, Weverton Gomes ; Azevedo, Camila Ferreira ; Soares, Plínio César ; Cruz, Cosme Damião</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-70e9fc8e7a5f66cf0c03a217d10d1c095b207357f675a17ac1b32f885bb794633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Bayesian analysis</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Credibility</topic><topic>Design of experiments</topic><topic>Experimental design</topic><topic>Experiments</topic><topic>Floods</topic><topic>Genotypes</topic><topic>Grain</topic><topic>Humidity</topic><topic>Life Sciences</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Markov processes</topic><topic>Mathematical models</topic><topic>Oryza sativa</topic><topic>Parameter estimation</topic><topic>Parameters</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Pathology</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Rice</topic><topic>Statistical inference</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>da Silva Junior, Antônio Carlos</creatorcontrib><creatorcontrib>de Castro Sant’Anna, Isabela</creatorcontrib><creatorcontrib>Peixoto, Marco Antônio</creatorcontrib><creatorcontrib>Torres, Lívia Gomes</creatorcontrib><creatorcontrib>Silva Siqueira, Michele Jorge</creatorcontrib><creatorcontrib>da Costa, Weverton Gomes</creatorcontrib><creatorcontrib>Azevedo, Camila Ferreira</creatorcontrib><creatorcontrib>Soares, Plínio César</creatorcontrib><creatorcontrib>Cruz, Cosme Damião</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Agricultural Science Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Euphytica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>da Silva Junior, Antônio Carlos</au><au>de Castro Sant’Anna, Isabela</au><au>Peixoto, Marco Antônio</au><au>Torres, Lívia Gomes</au><au>Silva Siqueira, Michele Jorge</au><au>da Costa, Weverton Gomes</au><au>Azevedo, Camila Ferreira</au><au>Soares, Plínio César</au><au>Cruz, Cosme Damião</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple-trait model through Bayesian inference applied to flood-irrigated rice (Oryza sativa L)</atitle><jtitle>Euphytica</jtitle><stitle>Euphytica</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>218</volume><issue>9</issue><artnum>124</artnum><issn>0014-2336</issn><eissn>1573-5060</eissn><abstract>The objectives of this study were to use a bayesian multi-trait model, estimate genetic parameters, and select flood-irrigated rice genotypes with better genetic potentials in different evaluation environments. For this, twenty-five rice genotypes and six traits belonging to the flood-irrigated rice improvement program were evaluated. The experimental design used in all experiments was a randomized block design with three replications. The Monte Carlo Markov Chain algorithm estimated genetic parameters and genetic values. The grain thickness trait was considered highly heritable, with a credibility interval ranging from:
h
2
: 0.9480; 0.9440; 0.8610, in environments 1, 2, and 3, respectively. The grain yields showed a weak correlation estimate between grain thickness and 100-grain weight, in all environments, with a credibility interval ranging from (
ρ
= 0.5477; 0.5762; 0.5618 and 0.5973; 0.5247; 0.5632, grain thickness and 100-grain weight, in environments 1, 2, and 3, respectively). The Bayesian multi-trait model proved to be an adequate strategy for the genetic improvement of flood-irrigated.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10681-022-03077-x</doi><orcidid>https://orcid.org/0000-0002-4200-6182</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-2336 |
ispartof | Euphytica, 2022-09, Vol.218 (9), Article 124 |
issn | 0014-2336 1573-5060 |
language | eng |
recordid | cdi_proquest_journals_2699221750 |
source | SpringerLink Journals |
subjects | Algorithms Analysis Bayesian analysis Biomedical and Life Sciences Biotechnology Credibility Design of experiments Experimental design Experiments Floods Genotypes Grain Humidity Life Sciences Markov analysis Markov chains Markov processes Mathematical models Oryza sativa Parameter estimation Parameters Plant Genetics and Genomics Plant Pathology Plant Physiology Plant Sciences Rice Statistical inference Thickness |
title | Multiple-trait model through Bayesian inference applied to flood-irrigated rice (Oryza sativa L) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A35%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple-trait%20model%20through%20Bayesian%20inference%20applied%20to%20flood-irrigated%20rice%20(Oryza%20sativa%20L)&rft.jtitle=Euphytica&rft.au=da%20Silva%20Junior,%20Ant%C3%B4nio%20Carlos&rft.date=2022-09-01&rft.volume=218&rft.issue=9&rft.artnum=124&rft.issn=0014-2336&rft.eissn=1573-5060&rft_id=info:doi/10.1007/s10681-022-03077-x&rft_dat=%3Cgale_proqu%3EA712875629%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2699221750&rft_id=info:pmid/&rft_galeid=A712875629&rfr_iscdi=true |