Multiple-trait model through Bayesian inference applied to flood-irrigated rice (Oryza sativa L)

The objectives of this study were to use a bayesian multi-trait model, estimate genetic parameters, and select flood-irrigated rice genotypes with better genetic potentials in different evaluation environments. For this, twenty-five rice genotypes and six traits belonging to the flood-irrigated rice...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Euphytica 2022-09, Vol.218 (9), Article 124
Hauptverfasser: da Silva Junior, Antônio Carlos, de Castro Sant’Anna, Isabela, Peixoto, Marco Antônio, Torres, Lívia Gomes, Silva Siqueira, Michele Jorge, da Costa, Weverton Gomes, Azevedo, Camila Ferreira, Soares, Plínio César, Cruz, Cosme Damião
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Euphytica
container_volume 218
creator da Silva Junior, Antônio Carlos
de Castro Sant’Anna, Isabela
Peixoto, Marco Antônio
Torres, Lívia Gomes
Silva Siqueira, Michele Jorge
da Costa, Weverton Gomes
Azevedo, Camila Ferreira
Soares, Plínio César
Cruz, Cosme Damião
description The objectives of this study were to use a bayesian multi-trait model, estimate genetic parameters, and select flood-irrigated rice genotypes with better genetic potentials in different evaluation environments. For this, twenty-five rice genotypes and six traits belonging to the flood-irrigated rice improvement program were evaluated. The experimental design used in all experiments was a randomized block design with three replications. The Monte Carlo Markov Chain algorithm estimated genetic parameters and genetic values. The grain thickness trait was considered highly heritable, with a credibility interval ranging from: h 2 : 0.9480; 0.9440; 0.8610, in environments 1, 2, and 3, respectively. The grain yields showed a weak correlation estimate between grain thickness and 100-grain weight, in all environments, with a credibility interval ranging from ( ρ = 0.5477; 0.5762; 0.5618 and 0.5973; 0.5247; 0.5632, grain thickness and 100-grain weight, in environments 1, 2, and 3, respectively). The Bayesian multi-trait model proved to be an adequate strategy for the genetic improvement of flood-irrigated.
doi_str_mv 10.1007/s10681-022-03077-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2699221750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A712875629</galeid><sourcerecordid>A712875629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-70e9fc8e7a5f66cf0c03a217d10d1c095b207357f675a17ac1b32f885bb794633</originalsourceid><addsrcrecordid>eNp9kE1PJCEQhonRxPHjD3gi8bJ7QAsYoPvoGr-SMV70jAwNI6an6QXGOP560d5kb6YOlVS9T328CJ1QOKMA6jxTkA0lwBgBDkqR9x00o0JxIkDCLpoB0DlhnMt9dJDzKwC0SsAMPd9v-hLG3pGSTCh4HTvX4_KS4mb1gv-YrcvBDDgM3iU3WIfNOPbBdbhE7PsYOxJSCitTaimF2v_1kLYfBmdTwpvBi99HaM-bPrvjf_kQPV1fPV7eksXDzd3lxYLYObBCFLjW28YpI7yU1oMFbhhVHYWOWmjFkoHiQnmphKHKWLrkzDeNWC5VO5ecH6LTae6Y4t-Ny0W_xk0a6krNZNuyOktAVZ1NqpXpna5fxfq2rdG5dbBxcD7U-oWirFFCsrYCbAJsijkn5_WYwtqkraagv6zXk_W6Wq-_rdfvFeITlKt4WLn0_5YfqE9isYal</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2699221750</pqid></control><display><type>article</type><title>Multiple-trait model through Bayesian inference applied to flood-irrigated rice (Oryza sativa L)</title><source>SpringerLink Journals</source><creator>da Silva Junior, Antônio Carlos ; de Castro Sant’Anna, Isabela ; Peixoto, Marco Antônio ; Torres, Lívia Gomes ; Silva Siqueira, Michele Jorge ; da Costa, Weverton Gomes ; Azevedo, Camila Ferreira ; Soares, Plínio César ; Cruz, Cosme Damião</creator><creatorcontrib>da Silva Junior, Antônio Carlos ; de Castro Sant’Anna, Isabela ; Peixoto, Marco Antônio ; Torres, Lívia Gomes ; Silva Siqueira, Michele Jorge ; da Costa, Weverton Gomes ; Azevedo, Camila Ferreira ; Soares, Plínio César ; Cruz, Cosme Damião</creatorcontrib><description>The objectives of this study were to use a bayesian multi-trait model, estimate genetic parameters, and select flood-irrigated rice genotypes with better genetic potentials in different evaluation environments. For this, twenty-five rice genotypes and six traits belonging to the flood-irrigated rice improvement program were evaluated. The experimental design used in all experiments was a randomized block design with three replications. The Monte Carlo Markov Chain algorithm estimated genetic parameters and genetic values. The grain thickness trait was considered highly heritable, with a credibility interval ranging from: h 2 : 0.9480; 0.9440; 0.8610, in environments 1, 2, and 3, respectively. The grain yields showed a weak correlation estimate between grain thickness and 100-grain weight, in all environments, with a credibility interval ranging from ( ρ = 0.5477; 0.5762; 0.5618 and 0.5973; 0.5247; 0.5632, grain thickness and 100-grain weight, in environments 1, 2, and 3, respectively). The Bayesian multi-trait model proved to be an adequate strategy for the genetic improvement of flood-irrigated.</description><identifier>ISSN: 0014-2336</identifier><identifier>EISSN: 1573-5060</identifier><identifier>DOI: 10.1007/s10681-022-03077-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Analysis ; Bayesian analysis ; Biomedical and Life Sciences ; Biotechnology ; Credibility ; Design of experiments ; Experimental design ; Experiments ; Floods ; Genotypes ; Grain ; Humidity ; Life Sciences ; Markov analysis ; Markov chains ; Markov processes ; Mathematical models ; Oryza sativa ; Parameter estimation ; Parameters ; Plant Genetics and Genomics ; Plant Pathology ; Plant Physiology ; Plant Sciences ; Rice ; Statistical inference ; Thickness</subject><ispartof>Euphytica, 2022-09, Vol.218 (9), Article 124</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-70e9fc8e7a5f66cf0c03a217d10d1c095b207357f675a17ac1b32f885bb794633</citedby><cites>FETCH-LOGICAL-c402t-70e9fc8e7a5f66cf0c03a217d10d1c095b207357f675a17ac1b32f885bb794633</cites><orcidid>0000-0002-4200-6182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10681-022-03077-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10681-022-03077-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>da Silva Junior, Antônio Carlos</creatorcontrib><creatorcontrib>de Castro Sant’Anna, Isabela</creatorcontrib><creatorcontrib>Peixoto, Marco Antônio</creatorcontrib><creatorcontrib>Torres, Lívia Gomes</creatorcontrib><creatorcontrib>Silva Siqueira, Michele Jorge</creatorcontrib><creatorcontrib>da Costa, Weverton Gomes</creatorcontrib><creatorcontrib>Azevedo, Camila Ferreira</creatorcontrib><creatorcontrib>Soares, Plínio César</creatorcontrib><creatorcontrib>Cruz, Cosme Damião</creatorcontrib><title>Multiple-trait model through Bayesian inference applied to flood-irrigated rice (Oryza sativa L)</title><title>Euphytica</title><addtitle>Euphytica</addtitle><description>The objectives of this study were to use a bayesian multi-trait model, estimate genetic parameters, and select flood-irrigated rice genotypes with better genetic potentials in different evaluation environments. For this, twenty-five rice genotypes and six traits belonging to the flood-irrigated rice improvement program were evaluated. The experimental design used in all experiments was a randomized block design with three replications. The Monte Carlo Markov Chain algorithm estimated genetic parameters and genetic values. The grain thickness trait was considered highly heritable, with a credibility interval ranging from: h 2 : 0.9480; 0.9440; 0.8610, in environments 1, 2, and 3, respectively. The grain yields showed a weak correlation estimate between grain thickness and 100-grain weight, in all environments, with a credibility interval ranging from ( ρ = 0.5477; 0.5762; 0.5618 and 0.5973; 0.5247; 0.5632, grain thickness and 100-grain weight, in environments 1, 2, and 3, respectively). The Bayesian multi-trait model proved to be an adequate strategy for the genetic improvement of flood-irrigated.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Bayesian analysis</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Credibility</subject><subject>Design of experiments</subject><subject>Experimental design</subject><subject>Experiments</subject><subject>Floods</subject><subject>Genotypes</subject><subject>Grain</subject><subject>Humidity</subject><subject>Life Sciences</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Markov processes</subject><subject>Mathematical models</subject><subject>Oryza sativa</subject><subject>Parameter estimation</subject><subject>Parameters</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Pathology</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Rice</subject><subject>Statistical inference</subject><subject>Thickness</subject><issn>0014-2336</issn><issn>1573-5060</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1PJCEQhonRxPHjD3gi8bJ7QAsYoPvoGr-SMV70jAwNI6an6QXGOP560d5kb6YOlVS9T328CJ1QOKMA6jxTkA0lwBgBDkqR9x00o0JxIkDCLpoB0DlhnMt9dJDzKwC0SsAMPd9v-hLG3pGSTCh4HTvX4_KS4mb1gv-YrcvBDDgM3iU3WIfNOPbBdbhE7PsYOxJSCitTaimF2v_1kLYfBmdTwpvBi99HaM-bPrvjf_kQPV1fPV7eksXDzd3lxYLYObBCFLjW28YpI7yU1oMFbhhVHYWOWmjFkoHiQnmphKHKWLrkzDeNWC5VO5ecH6LTae6Y4t-Ny0W_xk0a6krNZNuyOktAVZ1NqpXpna5fxfq2rdG5dbBxcD7U-oWirFFCsrYCbAJsijkn5_WYwtqkraagv6zXk_W6Wq-_rdfvFeITlKt4WLn0_5YfqE9isYal</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>da Silva Junior, Antônio Carlos</creator><creator>de Castro Sant’Anna, Isabela</creator><creator>Peixoto, Marco Antônio</creator><creator>Torres, Lívia Gomes</creator><creator>Silva Siqueira, Michele Jorge</creator><creator>da Costa, Weverton Gomes</creator><creator>Azevedo, Camila Ferreira</creator><creator>Soares, Plínio César</creator><creator>Cruz, Cosme Damião</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TM</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-4200-6182</orcidid></search><sort><creationdate>20220901</creationdate><title>Multiple-trait model through Bayesian inference applied to flood-irrigated rice (Oryza sativa L)</title><author>da Silva Junior, Antônio Carlos ; de Castro Sant’Anna, Isabela ; Peixoto, Marco Antônio ; Torres, Lívia Gomes ; Silva Siqueira, Michele Jorge ; da Costa, Weverton Gomes ; Azevedo, Camila Ferreira ; Soares, Plínio César ; Cruz, Cosme Damião</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-70e9fc8e7a5f66cf0c03a217d10d1c095b207357f675a17ac1b32f885bb794633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Bayesian analysis</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Credibility</topic><topic>Design of experiments</topic><topic>Experimental design</topic><topic>Experiments</topic><topic>Floods</topic><topic>Genotypes</topic><topic>Grain</topic><topic>Humidity</topic><topic>Life Sciences</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Markov processes</topic><topic>Mathematical models</topic><topic>Oryza sativa</topic><topic>Parameter estimation</topic><topic>Parameters</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Pathology</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Rice</topic><topic>Statistical inference</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>da Silva Junior, Antônio Carlos</creatorcontrib><creatorcontrib>de Castro Sant’Anna, Isabela</creatorcontrib><creatorcontrib>Peixoto, Marco Antônio</creatorcontrib><creatorcontrib>Torres, Lívia Gomes</creatorcontrib><creatorcontrib>Silva Siqueira, Michele Jorge</creatorcontrib><creatorcontrib>da Costa, Weverton Gomes</creatorcontrib><creatorcontrib>Azevedo, Camila Ferreira</creatorcontrib><creatorcontrib>Soares, Plínio César</creatorcontrib><creatorcontrib>Cruz, Cosme Damião</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Agricultural Science Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Euphytica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>da Silva Junior, Antônio Carlos</au><au>de Castro Sant’Anna, Isabela</au><au>Peixoto, Marco Antônio</au><au>Torres, Lívia Gomes</au><au>Silva Siqueira, Michele Jorge</au><au>da Costa, Weverton Gomes</au><au>Azevedo, Camila Ferreira</au><au>Soares, Plínio César</au><au>Cruz, Cosme Damião</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple-trait model through Bayesian inference applied to flood-irrigated rice (Oryza sativa L)</atitle><jtitle>Euphytica</jtitle><stitle>Euphytica</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>218</volume><issue>9</issue><artnum>124</artnum><issn>0014-2336</issn><eissn>1573-5060</eissn><abstract>The objectives of this study were to use a bayesian multi-trait model, estimate genetic parameters, and select flood-irrigated rice genotypes with better genetic potentials in different evaluation environments. For this, twenty-five rice genotypes and six traits belonging to the flood-irrigated rice improvement program were evaluated. The experimental design used in all experiments was a randomized block design with three replications. The Monte Carlo Markov Chain algorithm estimated genetic parameters and genetic values. The grain thickness trait was considered highly heritable, with a credibility interval ranging from: h 2 : 0.9480; 0.9440; 0.8610, in environments 1, 2, and 3, respectively. The grain yields showed a weak correlation estimate between grain thickness and 100-grain weight, in all environments, with a credibility interval ranging from ( ρ = 0.5477; 0.5762; 0.5618 and 0.5973; 0.5247; 0.5632, grain thickness and 100-grain weight, in environments 1, 2, and 3, respectively). The Bayesian multi-trait model proved to be an adequate strategy for the genetic improvement of flood-irrigated.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10681-022-03077-x</doi><orcidid>https://orcid.org/0000-0002-4200-6182</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-2336
ispartof Euphytica, 2022-09, Vol.218 (9), Article 124
issn 0014-2336
1573-5060
language eng
recordid cdi_proquest_journals_2699221750
source SpringerLink Journals
subjects Algorithms
Analysis
Bayesian analysis
Biomedical and Life Sciences
Biotechnology
Credibility
Design of experiments
Experimental design
Experiments
Floods
Genotypes
Grain
Humidity
Life Sciences
Markov analysis
Markov chains
Markov processes
Mathematical models
Oryza sativa
Parameter estimation
Parameters
Plant Genetics and Genomics
Plant Pathology
Plant Physiology
Plant Sciences
Rice
Statistical inference
Thickness
title Multiple-trait model through Bayesian inference applied to flood-irrigated rice (Oryza sativa L)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A35%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple-trait%20model%20through%20Bayesian%20inference%20applied%20to%20flood-irrigated%20rice%20(Oryza%20sativa%20L)&rft.jtitle=Euphytica&rft.au=da%20Silva%20Junior,%20Ant%C3%B4nio%20Carlos&rft.date=2022-09-01&rft.volume=218&rft.issue=9&rft.artnum=124&rft.issn=0014-2336&rft.eissn=1573-5060&rft_id=info:doi/10.1007/s10681-022-03077-x&rft_dat=%3Cgale_proqu%3EA712875629%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2699221750&rft_id=info:pmid/&rft_galeid=A712875629&rfr_iscdi=true