Investigation of structural, morphological, and optoelectronic properties of ZnO thin films with Sn–Ni as co-doping
In this work, ZnO thin films with different concentrations of Sn–Ni as a co-doping have been synthesized using the sol gel method by dip-coating process. The X-ray diffraction (XRD) patterns demonstrated that undoped and co-doped ZnO thin films have crystalline nature with a hexagonal structure. Mor...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2022-09, Vol.128 (9), Article 748 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Applied physics. A, Materials science & processing |
container_volume | 128 |
creator | Migdadi, A. B. Alqadi, M. K. Alzoubi, F. Y. Al-Khateeb, H. M. |
description | In this work, ZnO thin films with different concentrations of Sn–Ni as a co-doping have been synthesized using the sol gel method by dip-coating process. The X-ray diffraction (XRD) patterns demonstrated that undoped and co-doped ZnO thin films have crystalline nature with a hexagonal structure. Moreover, the crystallite size (
D
) exhibited a decreasing behavior due to the increasing doping ratio from 0 to 8 wt%, while the microstrain (
ε
) exhibited an increasing behavior. SEM micrographs demonstrated that undoped ZnO thin film has a homogeneous surface containing tiny spherical particles with an average size of less than 40 nm. Also, different sizes have been observed due to introducing Sn and Ni into ZnO thin films. Furthermore, the transmittance (
T
%) of all thin films ranges from 90 to 83%. It was found that the transmittance (
T
%) decreases due to the increasing co-doping ratio while the reflectance (
R
%) increases. The bandgap energies (
E
g
) values range from 3.24 to 3.07
eV
. Moreover, the Wemple–DiDomenico (WDD), Sellmeier, Spitzer–Fan models, and Drude models have been used to estimate different optical parameters such as dispersion energy (
E
d
), zero-frequency refractive index (
n
0
)
, zero-frequency dielectric constant (
ε
0
)
, the optical moment, high-frequency dielectric constant (
ε
∞
), the density of state (
N
c
/
m
∗
)
, relaxation time (
τ
), the optical mobility (
μ
opt
)
, and optical resistivity (
ρ
opt
). |
doi_str_mv | 10.1007/s00339-022-05883-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2699148040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2699148040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-86bd1d5fec135a1147c6b5f9e0f9e2fe25a5b9da417bf890e6c0255a2bd44ee93</originalsourceid><addsrcrecordid>eNp9UMtKAzEUDaJgrf6Aq4BbR_OcTpZSfBSKXagbNyGTybQp02RMMoo7_8E_9EtMreDOC5fLgXPOvfcAcIrRBUZochkRolQUiJAC8aqiBd8DI8xohiVF-2CEBJsUFRXlITiKcY1yMUJGYJi5VxOTXapkvYO-hTGFQachqO4cbnzoV77zS6u3ULkG-j550xmdgndWwz743oRkTdxqn90CppV1sLXdJsI3m1bwwX19fN5bqCLUvmh8b93yGBy0qovm5HeOwdPN9eP0rpgvbmfTq3mhCROpqMq6wQ1vjcaUK4zZRJc1b4VBuUlrCFe8Fo1ieFK3lUCm1IhwrkjdMGaMoGNwtvPNZ74M-U-59kNweaUkpRCYVYihzCI7lg4-xmBa2Qe7UeFdYiS38cpdvDLHK3_ilTyL6E4UM9ktTfiz_kf1DYfmgJU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2699148040</pqid></control><display><type>article</type><title>Investigation of structural, morphological, and optoelectronic properties of ZnO thin films with Sn–Ni as co-doping</title><source>SpringerLink Journals</source><creator>Migdadi, A. B. ; Alqadi, M. K. ; Alzoubi, F. Y. ; Al-Khateeb, H. M.</creator><creatorcontrib>Migdadi, A. B. ; Alqadi, M. K. ; Alzoubi, F. Y. ; Al-Khateeb, H. M.</creatorcontrib><description>In this work, ZnO thin films with different concentrations of Sn–Ni as a co-doping have been synthesized using the sol gel method by dip-coating process. The X-ray diffraction (XRD) patterns demonstrated that undoped and co-doped ZnO thin films have crystalline nature with a hexagonal structure. Moreover, the crystallite size (
D
) exhibited a decreasing behavior due to the increasing doping ratio from 0 to 8 wt%, while the microstrain (
ε
) exhibited an increasing behavior. SEM micrographs demonstrated that undoped ZnO thin film has a homogeneous surface containing tiny spherical particles with an average size of less than 40 nm. Also, different sizes have been observed due to introducing Sn and Ni into ZnO thin films. Furthermore, the transmittance (
T
%) of all thin films ranges from 90 to 83%. It was found that the transmittance (
T
%) decreases due to the increasing co-doping ratio while the reflectance (
R
%) increases. The bandgap energies (
E
g
) values range from 3.24 to 3.07
eV
. Moreover, the Wemple–DiDomenico (WDD), Sellmeier, Spitzer–Fan models, and Drude models have been used to estimate different optical parameters such as dispersion energy (
E
d
), zero-frequency refractive index (
n
0
)
, zero-frequency dielectric constant (
ε
0
)
, the optical moment, high-frequency dielectric constant (
ε
∞
), the density of state (
N
c
/
m
∗
)
, relaxation time (
τ
), the optical mobility (
μ
opt
)
, and optical resistivity (
ρ
opt
).</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-022-05883-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied physics ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Crystallites ; Diffraction patterns ; Dip coatings ; Doping ; Immersion coating ; Machines ; Manufacturing ; Materials science ; Microstrain ; Nanotechnology ; Optical and Electronic Materials ; Optoelectronics ; Permittivity ; Photomicrographs ; Physics ; Physics and Astronomy ; Processes ; Refractivity ; Relaxation time ; Sol-gel processes ; Surfaces and Interfaces ; Thin Films ; Transmittance ; Zinc oxide</subject><ispartof>Applied physics. A, Materials science & processing, 2022-09, Vol.128 (9), Article 748</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-86bd1d5fec135a1147c6b5f9e0f9e2fe25a5b9da417bf890e6c0255a2bd44ee93</citedby><cites>FETCH-LOGICAL-c249t-86bd1d5fec135a1147c6b5f9e0f9e2fe25a5b9da417bf890e6c0255a2bd44ee93</cites><orcidid>0000-0002-9101-7056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-022-05883-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-022-05883-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Migdadi, A. B.</creatorcontrib><creatorcontrib>Alqadi, M. K.</creatorcontrib><creatorcontrib>Alzoubi, F. Y.</creatorcontrib><creatorcontrib>Al-Khateeb, H. M.</creatorcontrib><title>Investigation of structural, morphological, and optoelectronic properties of ZnO thin films with Sn–Ni as co-doping</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>In this work, ZnO thin films with different concentrations of Sn–Ni as a co-doping have been synthesized using the sol gel method by dip-coating process. The X-ray diffraction (XRD) patterns demonstrated that undoped and co-doped ZnO thin films have crystalline nature with a hexagonal structure. Moreover, the crystallite size (
D
) exhibited a decreasing behavior due to the increasing doping ratio from 0 to 8 wt%, while the microstrain (
ε
) exhibited an increasing behavior. SEM micrographs demonstrated that undoped ZnO thin film has a homogeneous surface containing tiny spherical particles with an average size of less than 40 nm. Also, different sizes have been observed due to introducing Sn and Ni into ZnO thin films. Furthermore, the transmittance (
T
%) of all thin films ranges from 90 to 83%. It was found that the transmittance (
T
%) decreases due to the increasing co-doping ratio while the reflectance (
R
%) increases. The bandgap energies (
E
g
) values range from 3.24 to 3.07
eV
. Moreover, the Wemple–DiDomenico (WDD), Sellmeier, Spitzer–Fan models, and Drude models have been used to estimate different optical parameters such as dispersion energy (
E
d
), zero-frequency refractive index (
n
0
)
, zero-frequency dielectric constant (
ε
0
)
, the optical moment, high-frequency dielectric constant (
ε
∞
), the density of state (
N
c
/
m
∗
)
, relaxation time (
τ
), the optical mobility (
μ
opt
)
, and optical resistivity (
ρ
opt
).</description><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Crystallites</subject><subject>Diffraction patterns</subject><subject>Dip coatings</subject><subject>Doping</subject><subject>Immersion coating</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Microstrain</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Optoelectronics</subject><subject>Permittivity</subject><subject>Photomicrographs</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Refractivity</subject><subject>Relaxation time</subject><subject>Sol-gel processes</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Transmittance</subject><subject>Zinc oxide</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKAzEUDaJgrf6Aq4BbR_OcTpZSfBSKXagbNyGTybQp02RMMoo7_8E_9EtMreDOC5fLgXPOvfcAcIrRBUZochkRolQUiJAC8aqiBd8DI8xohiVF-2CEBJsUFRXlITiKcY1yMUJGYJi5VxOTXapkvYO-hTGFQachqO4cbnzoV77zS6u3ULkG-j550xmdgndWwz743oRkTdxqn90CppV1sLXdJsI3m1bwwX19fN5bqCLUvmh8b93yGBy0qovm5HeOwdPN9eP0rpgvbmfTq3mhCROpqMq6wQ1vjcaUK4zZRJc1b4VBuUlrCFe8Fo1ieFK3lUCm1IhwrkjdMGaMoGNwtvPNZ74M-U-59kNweaUkpRCYVYihzCI7lg4-xmBa2Qe7UeFdYiS38cpdvDLHK3_ilTyL6E4UM9ktTfiz_kf1DYfmgJU</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Migdadi, A. B.</creator><creator>Alqadi, M. K.</creator><creator>Alzoubi, F. Y.</creator><creator>Al-Khateeb, H. M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9101-7056</orcidid></search><sort><creationdate>20220901</creationdate><title>Investigation of structural, morphological, and optoelectronic properties of ZnO thin films with Sn–Ni as co-doping</title><author>Migdadi, A. B. ; Alqadi, M. K. ; Alzoubi, F. Y. ; Al-Khateeb, H. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-86bd1d5fec135a1147c6b5f9e0f9e2fe25a5b9da417bf890e6c0255a2bd44ee93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Crystallites</topic><topic>Diffraction patterns</topic><topic>Dip coatings</topic><topic>Doping</topic><topic>Immersion coating</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Microstrain</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Optoelectronics</topic><topic>Permittivity</topic><topic>Photomicrographs</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Refractivity</topic><topic>Relaxation time</topic><topic>Sol-gel processes</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Transmittance</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Migdadi, A. B.</creatorcontrib><creatorcontrib>Alqadi, M. K.</creatorcontrib><creatorcontrib>Alzoubi, F. Y.</creatorcontrib><creatorcontrib>Al-Khateeb, H. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Migdadi, A. B.</au><au>Alqadi, M. K.</au><au>Alzoubi, F. Y.</au><au>Al-Khateeb, H. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of structural, morphological, and optoelectronic properties of ZnO thin films with Sn–Ni as co-doping</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>128</volume><issue>9</issue><artnum>748</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>In this work, ZnO thin films with different concentrations of Sn–Ni as a co-doping have been synthesized using the sol gel method by dip-coating process. The X-ray diffraction (XRD) patterns demonstrated that undoped and co-doped ZnO thin films have crystalline nature with a hexagonal structure. Moreover, the crystallite size (
D
) exhibited a decreasing behavior due to the increasing doping ratio from 0 to 8 wt%, while the microstrain (
ε
) exhibited an increasing behavior. SEM micrographs demonstrated that undoped ZnO thin film has a homogeneous surface containing tiny spherical particles with an average size of less than 40 nm. Also, different sizes have been observed due to introducing Sn and Ni into ZnO thin films. Furthermore, the transmittance (
T
%) of all thin films ranges from 90 to 83%. It was found that the transmittance (
T
%) decreases due to the increasing co-doping ratio while the reflectance (
R
%) increases. The bandgap energies (
E
g
) values range from 3.24 to 3.07
eV
. Moreover, the Wemple–DiDomenico (WDD), Sellmeier, Spitzer–Fan models, and Drude models have been used to estimate different optical parameters such as dispersion energy (
E
d
), zero-frequency refractive index (
n
0
)
, zero-frequency dielectric constant (
ε
0
)
, the optical moment, high-frequency dielectric constant (
ε
∞
), the density of state (
N
c
/
m
∗
)
, relaxation time (
τ
), the optical mobility (
μ
opt
)
, and optical resistivity (
ρ
opt
).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-022-05883-5</doi><orcidid>https://orcid.org/0000-0002-9101-7056</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2022-09, Vol.128 (9), Article 748 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_journals_2699148040 |
source | SpringerLink Journals |
subjects | Applied physics Characterization and Evaluation of Materials Condensed Matter Physics Crystallites Diffraction patterns Dip coatings Doping Immersion coating Machines Manufacturing Materials science Microstrain Nanotechnology Optical and Electronic Materials Optoelectronics Permittivity Photomicrographs Physics Physics and Astronomy Processes Refractivity Relaxation time Sol-gel processes Surfaces and Interfaces Thin Films Transmittance Zinc oxide |
title | Investigation of structural, morphological, and optoelectronic properties of ZnO thin films with Sn–Ni as co-doping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A51%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20structural,%20morphological,%20and%20optoelectronic%20properties%20of%20ZnO%20thin%20films%20with%20Sn%E2%80%93Ni%20as%20co-doping&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Migdadi,%20A.%20B.&rft.date=2022-09-01&rft.volume=128&rft.issue=9&rft.artnum=748&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-022-05883-5&rft_dat=%3Cproquest_cross%3E2699148040%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2699148040&rft_id=info:pmid/&rfr_iscdi=true |