Investigation of structural, morphological, and optoelectronic properties of ZnO thin films with Sn–Ni as co-doping

In this work, ZnO thin films with different concentrations of Sn–Ni as a co-doping have been synthesized using the sol gel method by dip-coating process. The X-ray diffraction (XRD) patterns demonstrated that undoped and co-doped ZnO thin films have crystalline nature with a hexagonal structure. Mor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2022-09, Vol.128 (9), Article 748
Hauptverfasser: Migdadi, A. B., Alqadi, M. K., Alzoubi, F. Y., Al-Khateeb, H. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Applied physics. A, Materials science & processing
container_volume 128
creator Migdadi, A. B.
Alqadi, M. K.
Alzoubi, F. Y.
Al-Khateeb, H. M.
description In this work, ZnO thin films with different concentrations of Sn–Ni as a co-doping have been synthesized using the sol gel method by dip-coating process. The X-ray diffraction (XRD) patterns demonstrated that undoped and co-doped ZnO thin films have crystalline nature with a hexagonal structure. Moreover, the crystallite size ( D ) exhibited a decreasing behavior due to the increasing doping ratio from 0 to 8 wt%, while the microstrain ( ε ) exhibited an increasing behavior. SEM micrographs demonstrated that undoped ZnO thin film has a homogeneous surface containing tiny spherical particles with an average size of less than 40 nm. Also, different sizes have been observed due to introducing Sn and Ni into ZnO thin films. Furthermore, the transmittance ( T %) of all thin films ranges from 90 to 83%. It was found that the transmittance ( T %) decreases due to the increasing co-doping ratio while the reflectance ( R %) increases. The bandgap energies ( E g ) values range from 3.24 to 3.07  eV . Moreover, the Wemple–DiDomenico (WDD), Sellmeier, Spitzer–Fan models, and Drude models have been used to estimate different optical parameters such as dispersion energy ( E d ), zero-frequency refractive index ( n 0 ) , zero-frequency dielectric constant ( ε 0 ) , the optical moment, high-frequency dielectric constant ( ε ∞ ), the density of state ( N c / m ∗ ) , relaxation time ( τ ), the optical mobility ( μ opt ) , and optical resistivity ( ρ opt ).
doi_str_mv 10.1007/s00339-022-05883-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2699148040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2699148040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-86bd1d5fec135a1147c6b5f9e0f9e2fe25a5b9da417bf890e6c0255a2bd44ee93</originalsourceid><addsrcrecordid>eNp9UMtKAzEUDaJgrf6Aq4BbR_OcTpZSfBSKXagbNyGTybQp02RMMoo7_8E_9EtMreDOC5fLgXPOvfcAcIrRBUZochkRolQUiJAC8aqiBd8DI8xohiVF-2CEBJsUFRXlITiKcY1yMUJGYJi5VxOTXapkvYO-hTGFQachqO4cbnzoV77zS6u3ULkG-j550xmdgndWwz743oRkTdxqn90CppV1sLXdJsI3m1bwwX19fN5bqCLUvmh8b93yGBy0qovm5HeOwdPN9eP0rpgvbmfTq3mhCROpqMq6wQ1vjcaUK4zZRJc1b4VBuUlrCFe8Fo1ieFK3lUCm1IhwrkjdMGaMoGNwtvPNZ74M-U-59kNweaUkpRCYVYihzCI7lg4-xmBa2Qe7UeFdYiS38cpdvDLHK3_ilTyL6E4UM9ktTfiz_kf1DYfmgJU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2699148040</pqid></control><display><type>article</type><title>Investigation of structural, morphological, and optoelectronic properties of ZnO thin films with Sn–Ni as co-doping</title><source>SpringerLink Journals</source><creator>Migdadi, A. B. ; Alqadi, M. K. ; Alzoubi, F. Y. ; Al-Khateeb, H. M.</creator><creatorcontrib>Migdadi, A. B. ; Alqadi, M. K. ; Alzoubi, F. Y. ; Al-Khateeb, H. M.</creatorcontrib><description>In this work, ZnO thin films with different concentrations of Sn–Ni as a co-doping have been synthesized using the sol gel method by dip-coating process. The X-ray diffraction (XRD) patterns demonstrated that undoped and co-doped ZnO thin films have crystalline nature with a hexagonal structure. Moreover, the crystallite size ( D ) exhibited a decreasing behavior due to the increasing doping ratio from 0 to 8 wt%, while the microstrain ( ε ) exhibited an increasing behavior. SEM micrographs demonstrated that undoped ZnO thin film has a homogeneous surface containing tiny spherical particles with an average size of less than 40 nm. Also, different sizes have been observed due to introducing Sn and Ni into ZnO thin films. Furthermore, the transmittance ( T %) of all thin films ranges from 90 to 83%. It was found that the transmittance ( T %) decreases due to the increasing co-doping ratio while the reflectance ( R %) increases. The bandgap energies ( E g ) values range from 3.24 to 3.07  eV . Moreover, the Wemple–DiDomenico (WDD), Sellmeier, Spitzer–Fan models, and Drude models have been used to estimate different optical parameters such as dispersion energy ( E d ), zero-frequency refractive index ( n 0 ) , zero-frequency dielectric constant ( ε 0 ) , the optical moment, high-frequency dielectric constant ( ε ∞ ), the density of state ( N c / m ∗ ) , relaxation time ( τ ), the optical mobility ( μ opt ) , and optical resistivity ( ρ opt ).</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-022-05883-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied physics ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Crystallites ; Diffraction patterns ; Dip coatings ; Doping ; Immersion coating ; Machines ; Manufacturing ; Materials science ; Microstrain ; Nanotechnology ; Optical and Electronic Materials ; Optoelectronics ; Permittivity ; Photomicrographs ; Physics ; Physics and Astronomy ; Processes ; Refractivity ; Relaxation time ; Sol-gel processes ; Surfaces and Interfaces ; Thin Films ; Transmittance ; Zinc oxide</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2022-09, Vol.128 (9), Article 748</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-86bd1d5fec135a1147c6b5f9e0f9e2fe25a5b9da417bf890e6c0255a2bd44ee93</citedby><cites>FETCH-LOGICAL-c249t-86bd1d5fec135a1147c6b5f9e0f9e2fe25a5b9da417bf890e6c0255a2bd44ee93</cites><orcidid>0000-0002-9101-7056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-022-05883-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-022-05883-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Migdadi, A. B.</creatorcontrib><creatorcontrib>Alqadi, M. K.</creatorcontrib><creatorcontrib>Alzoubi, F. Y.</creatorcontrib><creatorcontrib>Al-Khateeb, H. M.</creatorcontrib><title>Investigation of structural, morphological, and optoelectronic properties of ZnO thin films with Sn–Ni as co-doping</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>In this work, ZnO thin films with different concentrations of Sn–Ni as a co-doping have been synthesized using the sol gel method by dip-coating process. The X-ray diffraction (XRD) patterns demonstrated that undoped and co-doped ZnO thin films have crystalline nature with a hexagonal structure. Moreover, the crystallite size ( D ) exhibited a decreasing behavior due to the increasing doping ratio from 0 to 8 wt%, while the microstrain ( ε ) exhibited an increasing behavior. SEM micrographs demonstrated that undoped ZnO thin film has a homogeneous surface containing tiny spherical particles with an average size of less than 40 nm. Also, different sizes have been observed due to introducing Sn and Ni into ZnO thin films. Furthermore, the transmittance ( T %) of all thin films ranges from 90 to 83%. It was found that the transmittance ( T %) decreases due to the increasing co-doping ratio while the reflectance ( R %) increases. The bandgap energies ( E g ) values range from 3.24 to 3.07  eV . Moreover, the Wemple–DiDomenico (WDD), Sellmeier, Spitzer–Fan models, and Drude models have been used to estimate different optical parameters such as dispersion energy ( E d ), zero-frequency refractive index ( n 0 ) , zero-frequency dielectric constant ( ε 0 ) , the optical moment, high-frequency dielectric constant ( ε ∞ ), the density of state ( N c / m ∗ ) , relaxation time ( τ ), the optical mobility ( μ opt ) , and optical resistivity ( ρ opt ).</description><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Crystallites</subject><subject>Diffraction patterns</subject><subject>Dip coatings</subject><subject>Doping</subject><subject>Immersion coating</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Microstrain</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Optoelectronics</subject><subject>Permittivity</subject><subject>Photomicrographs</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Refractivity</subject><subject>Relaxation time</subject><subject>Sol-gel processes</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Transmittance</subject><subject>Zinc oxide</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKAzEUDaJgrf6Aq4BbR_OcTpZSfBSKXagbNyGTybQp02RMMoo7_8E_9EtMreDOC5fLgXPOvfcAcIrRBUZochkRolQUiJAC8aqiBd8DI8xohiVF-2CEBJsUFRXlITiKcY1yMUJGYJi5VxOTXapkvYO-hTGFQachqO4cbnzoV77zS6u3ULkG-j550xmdgndWwz743oRkTdxqn90CppV1sLXdJsI3m1bwwX19fN5bqCLUvmh8b93yGBy0qovm5HeOwdPN9eP0rpgvbmfTq3mhCROpqMq6wQ1vjcaUK4zZRJc1b4VBuUlrCFe8Fo1ieFK3lUCm1IhwrkjdMGaMoGNwtvPNZ74M-U-59kNweaUkpRCYVYihzCI7lg4-xmBa2Qe7UeFdYiS38cpdvDLHK3_ilTyL6E4UM9ktTfiz_kf1DYfmgJU</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Migdadi, A. B.</creator><creator>Alqadi, M. K.</creator><creator>Alzoubi, F. Y.</creator><creator>Al-Khateeb, H. M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9101-7056</orcidid></search><sort><creationdate>20220901</creationdate><title>Investigation of structural, morphological, and optoelectronic properties of ZnO thin films with Sn–Ni as co-doping</title><author>Migdadi, A. B. ; Alqadi, M. K. ; Alzoubi, F. Y. ; Al-Khateeb, H. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-86bd1d5fec135a1147c6b5f9e0f9e2fe25a5b9da417bf890e6c0255a2bd44ee93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Crystallites</topic><topic>Diffraction patterns</topic><topic>Dip coatings</topic><topic>Doping</topic><topic>Immersion coating</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Microstrain</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Optoelectronics</topic><topic>Permittivity</topic><topic>Photomicrographs</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Refractivity</topic><topic>Relaxation time</topic><topic>Sol-gel processes</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Transmittance</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Migdadi, A. B.</creatorcontrib><creatorcontrib>Alqadi, M. K.</creatorcontrib><creatorcontrib>Alzoubi, F. Y.</creatorcontrib><creatorcontrib>Al-Khateeb, H. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Migdadi, A. B.</au><au>Alqadi, M. K.</au><au>Alzoubi, F. Y.</au><au>Al-Khateeb, H. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of structural, morphological, and optoelectronic properties of ZnO thin films with Sn–Ni as co-doping</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>128</volume><issue>9</issue><artnum>748</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>In this work, ZnO thin films with different concentrations of Sn–Ni as a co-doping have been synthesized using the sol gel method by dip-coating process. The X-ray diffraction (XRD) patterns demonstrated that undoped and co-doped ZnO thin films have crystalline nature with a hexagonal structure. Moreover, the crystallite size ( D ) exhibited a decreasing behavior due to the increasing doping ratio from 0 to 8 wt%, while the microstrain ( ε ) exhibited an increasing behavior. SEM micrographs demonstrated that undoped ZnO thin film has a homogeneous surface containing tiny spherical particles with an average size of less than 40 nm. Also, different sizes have been observed due to introducing Sn and Ni into ZnO thin films. Furthermore, the transmittance ( T %) of all thin films ranges from 90 to 83%. It was found that the transmittance ( T %) decreases due to the increasing co-doping ratio while the reflectance ( R %) increases. The bandgap energies ( E g ) values range from 3.24 to 3.07  eV . Moreover, the Wemple–DiDomenico (WDD), Sellmeier, Spitzer–Fan models, and Drude models have been used to estimate different optical parameters such as dispersion energy ( E d ), zero-frequency refractive index ( n 0 ) , zero-frequency dielectric constant ( ε 0 ) , the optical moment, high-frequency dielectric constant ( ε ∞ ), the density of state ( N c / m ∗ ) , relaxation time ( τ ), the optical mobility ( μ opt ) , and optical resistivity ( ρ opt ).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-022-05883-5</doi><orcidid>https://orcid.org/0000-0002-9101-7056</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2022-09, Vol.128 (9), Article 748
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_2699148040
source SpringerLink Journals
subjects Applied physics
Characterization and Evaluation of Materials
Condensed Matter Physics
Crystallites
Diffraction patterns
Dip coatings
Doping
Immersion coating
Machines
Manufacturing
Materials science
Microstrain
Nanotechnology
Optical and Electronic Materials
Optoelectronics
Permittivity
Photomicrographs
Physics
Physics and Astronomy
Processes
Refractivity
Relaxation time
Sol-gel processes
Surfaces and Interfaces
Thin Films
Transmittance
Zinc oxide
title Investigation of structural, morphological, and optoelectronic properties of ZnO thin films with Sn–Ni as co-doping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A51%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20structural,%20morphological,%20and%20optoelectronic%20properties%20of%20ZnO%20thin%20films%20with%20Sn%E2%80%93Ni%20as%20co-doping&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Migdadi,%20A.%20B.&rft.date=2022-09-01&rft.volume=128&rft.issue=9&rft.artnum=748&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-022-05883-5&rft_dat=%3Cproquest_cross%3E2699148040%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2699148040&rft_id=info:pmid/&rfr_iscdi=true