Antarctic Polar Vortex Dynamics Depending on Wind Speed Along the Vortex Edge
The stratospheric polar vortices play a key role in springtime polar ozone depletion and can influence the stratospheric circulation. In this work, we use the method of vortex delineation based on geopotential values determined from the maximum temperature gradient and maximum wind speed, thus chara...
Gespeichert in:
Veröffentlicht in: | Pure and applied geophysics 2022-07, Vol.179 (6-7), p.2609-2616 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2616 |
---|---|
container_issue | 6-7 |
container_start_page | 2609 |
container_title | Pure and applied geophysics |
container_volume | 179 |
creator | Zuev, Vladimir V. Savelieva, Ekaterina |
description | The stratospheric polar vortices play a key role in springtime polar ozone depletion and can influence the stratospheric circulation. In this work, we use the method of vortex delineation based on geopotential values determined from the maximum temperature gradient and maximum wind speed, thus characterizing the edge of the Antarctic polar vortex. Using the vortex delineation method based on the ERA5 reanalysis data for 1979–2019, we characterized the dynamics of the Antarctic polar vortex in the lower stratosphere depending on the prevailing wind speed along the vortex edge. We filtered out cases of weakening of the dynamic barrier, which prevents the penetration of air masses into the polar vortex. We show that in the lower stratosphere the area of the Antarctic polar vortex usually exceeds 10 million km
2
, the mean wind speed along the vortex edge typically exceeds 30 m/s, and the mean temperature inside the vortex is in most cases less than −50 °C. |
doi_str_mv | 10.1007/s00024-022-03054-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2698979560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2698979560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-216f35a27648200b293166d6d3c2bfc4429c172694695435c1f3fa6e8598cf013</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTmOZNlaX1BRcHXMqSZTJ3SJmMyBfvvHR3FnasLh_OdCx9CpxTOKUBxkQGACQKMEeAgBRF7aEQFA6IpV_toBMA5EVLyQ3SU8wqAFoXUI3Q3CZ1Nrmscfohrm_BLTJ3_wLNdsJvGZTzzrQ9VE5Y4BvzahAo_tt5XeLKOfda9-V_islr6Y3RQ23X2Jz93jJ6vLp-mN2R-f307ncyJY0J3hFFVc2lZoUTJABZMc6pUpSru2KJ2QjDtaMGUFkpLwaWjNa-t8qXUpauB8jE6G3bbFN-3PndmFbcp9C9NT5W60FJB32JDy6WYc_K1aVOzsWlnKJgvbWbQZnpt5lubET3EByj35bD06W_6H-oTS_ttUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2698979560</pqid></control><display><type>article</type><title>Antarctic Polar Vortex Dynamics Depending on Wind Speed Along the Vortex Edge</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zuev, Vladimir V. ; Savelieva, Ekaterina</creator><creatorcontrib>Zuev, Vladimir V. ; Savelieva, Ekaterina</creatorcontrib><description>The stratospheric polar vortices play a key role in springtime polar ozone depletion and can influence the stratospheric circulation. In this work, we use the method of vortex delineation based on geopotential values determined from the maximum temperature gradient and maximum wind speed, thus characterizing the edge of the Antarctic polar vortex. Using the vortex delineation method based on the ERA5 reanalysis data for 1979–2019, we characterized the dynamics of the Antarctic polar vortex in the lower stratosphere depending on the prevailing wind speed along the vortex edge. We filtered out cases of weakening of the dynamic barrier, which prevents the penetration of air masses into the polar vortex. We show that in the lower stratosphere the area of the Antarctic polar vortex usually exceeds 10 million km
2
, the mean wind speed along the vortex edge typically exceeds 30 m/s, and the mean temperature inside the vortex is in most cases less than −50 °C.</description><identifier>ISSN: 0033-4553</identifier><identifier>EISSN: 1420-9136</identifier><identifier>DOI: 10.1007/s00024-022-03054-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Air masses ; Antarctic vortex ; Delineation ; Dynamic height ; Dynamics ; Earth and Environmental Science ; Earth Sciences ; Geophysics/Geodesy ; Geopotential ; Lower stratosphere ; Maximum temperatures ; Maximum winds ; Mean temperatures ; Mean winds ; Ozone ; Ozone depletion ; Polar vortex ; Stratosphere ; Stratospheric circulation ; Stratospheric polar vortexes ; Stratospheric vortices ; Temperature ; Temperature gradients ; Vortex dynamics ; Vortices ; Wind ; Wind speed ; Winter</subject><ispartof>Pure and applied geophysics, 2022-07, Vol.179 (6-7), p.2609-2616</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-216f35a27648200b293166d6d3c2bfc4429c172694695435c1f3fa6e8598cf013</citedby><cites>FETCH-LOGICAL-c249t-216f35a27648200b293166d6d3c2bfc4429c172694695435c1f3fa6e8598cf013</cites><orcidid>0000-0002-6560-7386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00024-022-03054-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00024-022-03054-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Zuev, Vladimir V.</creatorcontrib><creatorcontrib>Savelieva, Ekaterina</creatorcontrib><title>Antarctic Polar Vortex Dynamics Depending on Wind Speed Along the Vortex Edge</title><title>Pure and applied geophysics</title><addtitle>Pure Appl. Geophys</addtitle><description>The stratospheric polar vortices play a key role in springtime polar ozone depletion and can influence the stratospheric circulation. In this work, we use the method of vortex delineation based on geopotential values determined from the maximum temperature gradient and maximum wind speed, thus characterizing the edge of the Antarctic polar vortex. Using the vortex delineation method based on the ERA5 reanalysis data for 1979–2019, we characterized the dynamics of the Antarctic polar vortex in the lower stratosphere depending on the prevailing wind speed along the vortex edge. We filtered out cases of weakening of the dynamic barrier, which prevents the penetration of air masses into the polar vortex. We show that in the lower stratosphere the area of the Antarctic polar vortex usually exceeds 10 million km
2
, the mean wind speed along the vortex edge typically exceeds 30 m/s, and the mean temperature inside the vortex is in most cases less than −50 °C.</description><subject>Air masses</subject><subject>Antarctic vortex</subject><subject>Delineation</subject><subject>Dynamic height</subject><subject>Dynamics</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics/Geodesy</subject><subject>Geopotential</subject><subject>Lower stratosphere</subject><subject>Maximum temperatures</subject><subject>Maximum winds</subject><subject>Mean temperatures</subject><subject>Mean winds</subject><subject>Ozone</subject><subject>Ozone depletion</subject><subject>Polar vortex</subject><subject>Stratosphere</subject><subject>Stratospheric circulation</subject><subject>Stratospheric polar vortexes</subject><subject>Stratospheric vortices</subject><subject>Temperature</subject><subject>Temperature gradients</subject><subject>Vortex dynamics</subject><subject>Vortices</subject><subject>Wind</subject><subject>Wind speed</subject><subject>Winter</subject><issn>0033-4553</issn><issn>1420-9136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTmOZNlaX1BRcHXMqSZTJ3SJmMyBfvvHR3FnasLh_OdCx9CpxTOKUBxkQGACQKMEeAgBRF7aEQFA6IpV_toBMA5EVLyQ3SU8wqAFoXUI3Q3CZ1Nrmscfohrm_BLTJ3_wLNdsJvGZTzzrQ9VE5Y4BvzahAo_tt5XeLKOfda9-V_islr6Y3RQ23X2Jz93jJ6vLp-mN2R-f307ncyJY0J3hFFVc2lZoUTJABZMc6pUpSru2KJ2QjDtaMGUFkpLwaWjNa-t8qXUpauB8jE6G3bbFN-3PndmFbcp9C9NT5W60FJB32JDy6WYc_K1aVOzsWlnKJgvbWbQZnpt5lubET3EByj35bD06W_6H-oTS_ttUA</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Zuev, Vladimir V.</creator><creator>Savelieva, Ekaterina</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6560-7386</orcidid></search><sort><creationdate>20220701</creationdate><title>Antarctic Polar Vortex Dynamics Depending on Wind Speed Along the Vortex Edge</title><author>Zuev, Vladimir V. ; Savelieva, Ekaterina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-216f35a27648200b293166d6d3c2bfc4429c172694695435c1f3fa6e8598cf013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air masses</topic><topic>Antarctic vortex</topic><topic>Delineation</topic><topic>Dynamic height</topic><topic>Dynamics</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics/Geodesy</topic><topic>Geopotential</topic><topic>Lower stratosphere</topic><topic>Maximum temperatures</topic><topic>Maximum winds</topic><topic>Mean temperatures</topic><topic>Mean winds</topic><topic>Ozone</topic><topic>Ozone depletion</topic><topic>Polar vortex</topic><topic>Stratosphere</topic><topic>Stratospheric circulation</topic><topic>Stratospheric polar vortexes</topic><topic>Stratospheric vortices</topic><topic>Temperature</topic><topic>Temperature gradients</topic><topic>Vortex dynamics</topic><topic>Vortices</topic><topic>Wind</topic><topic>Wind speed</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuev, Vladimir V.</creatorcontrib><creatorcontrib>Savelieva, Ekaterina</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Pure and applied geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuev, Vladimir V.</au><au>Savelieva, Ekaterina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antarctic Polar Vortex Dynamics Depending on Wind Speed Along the Vortex Edge</atitle><jtitle>Pure and applied geophysics</jtitle><stitle>Pure Appl. Geophys</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>179</volume><issue>6-7</issue><spage>2609</spage><epage>2616</epage><pages>2609-2616</pages><issn>0033-4553</issn><eissn>1420-9136</eissn><abstract>The stratospheric polar vortices play a key role in springtime polar ozone depletion and can influence the stratospheric circulation. In this work, we use the method of vortex delineation based on geopotential values determined from the maximum temperature gradient and maximum wind speed, thus characterizing the edge of the Antarctic polar vortex. Using the vortex delineation method based on the ERA5 reanalysis data for 1979–2019, we characterized the dynamics of the Antarctic polar vortex in the lower stratosphere depending on the prevailing wind speed along the vortex edge. We filtered out cases of weakening of the dynamic barrier, which prevents the penetration of air masses into the polar vortex. We show that in the lower stratosphere the area of the Antarctic polar vortex usually exceeds 10 million km
2
, the mean wind speed along the vortex edge typically exceeds 30 m/s, and the mean temperature inside the vortex is in most cases less than −50 °C.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00024-022-03054-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6560-7386</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-4553 |
ispartof | Pure and applied geophysics, 2022-07, Vol.179 (6-7), p.2609-2616 |
issn | 0033-4553 1420-9136 |
language | eng |
recordid | cdi_proquest_journals_2698979560 |
source | SpringerLink Journals - AutoHoldings |
subjects | Air masses Antarctic vortex Delineation Dynamic height Dynamics Earth and Environmental Science Earth Sciences Geophysics/Geodesy Geopotential Lower stratosphere Maximum temperatures Maximum winds Mean temperatures Mean winds Ozone Ozone depletion Polar vortex Stratosphere Stratospheric circulation Stratospheric polar vortexes Stratospheric vortices Temperature Temperature gradients Vortex dynamics Vortices Wind Wind speed Winter |
title | Antarctic Polar Vortex Dynamics Depending on Wind Speed Along the Vortex Edge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A19%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antarctic%20Polar%20Vortex%20Dynamics%20Depending%20on%20Wind%20Speed%20Along%20the%20Vortex%20Edge&rft.jtitle=Pure%20and%20applied%20geophysics&rft.au=Zuev,%20Vladimir%20V.&rft.date=2022-07-01&rft.volume=179&rft.issue=6-7&rft.spage=2609&rft.epage=2616&rft.pages=2609-2616&rft.issn=0033-4553&rft.eissn=1420-9136&rft_id=info:doi/10.1007/s00024-022-03054-4&rft_dat=%3Cproquest_cross%3E2698979560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2698979560&rft_id=info:pmid/&rfr_iscdi=true |