Antarctic Polar Vortex Dynamics Depending on Wind Speed Along the Vortex Edge

The stratospheric polar vortices play a key role in springtime polar ozone depletion and can influence the stratospheric circulation. In this work, we use the method of vortex delineation based on geopotential values determined from the maximum temperature gradient and maximum wind speed, thus chara...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pure and applied geophysics 2022-07, Vol.179 (6-7), p.2609-2616
Hauptverfasser: Zuev, Vladimir V., Savelieva, Ekaterina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2616
container_issue 6-7
container_start_page 2609
container_title Pure and applied geophysics
container_volume 179
creator Zuev, Vladimir V.
Savelieva, Ekaterina
description The stratospheric polar vortices play a key role in springtime polar ozone depletion and can influence the stratospheric circulation. In this work, we use the method of vortex delineation based on geopotential values determined from the maximum temperature gradient and maximum wind speed, thus characterizing the edge of the Antarctic polar vortex. Using the vortex delineation method based on the ERA5 reanalysis data for 1979–2019, we characterized the dynamics of the Antarctic polar vortex in the lower stratosphere depending on the prevailing wind speed along the vortex edge. We filtered out cases of weakening of the dynamic barrier, which prevents the penetration of air masses into the polar vortex. We show that in the lower stratosphere the area of the Antarctic polar vortex usually exceeds 10 million km 2 , the mean wind speed along the vortex edge typically exceeds 30 m/s, and the mean temperature inside the vortex is in most cases less than −50 °C.
doi_str_mv 10.1007/s00024-022-03054-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2698979560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2698979560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-216f35a27648200b293166d6d3c2bfc4429c172694695435c1f3fa6e8598cf013</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTmOZNlaX1BRcHXMqSZTJ3SJmMyBfvvHR3FnasLh_OdCx9CpxTOKUBxkQGACQKMEeAgBRF7aEQFA6IpV_toBMA5EVLyQ3SU8wqAFoXUI3Q3CZ1Nrmscfohrm_BLTJ3_wLNdsJvGZTzzrQ9VE5Y4BvzahAo_tt5XeLKOfda9-V_islr6Y3RQ23X2Jz93jJ6vLp-mN2R-f307ncyJY0J3hFFVc2lZoUTJABZMc6pUpSru2KJ2QjDtaMGUFkpLwaWjNa-t8qXUpauB8jE6G3bbFN-3PndmFbcp9C9NT5W60FJB32JDy6WYc_K1aVOzsWlnKJgvbWbQZnpt5lubET3EByj35bD06W_6H-oTS_ttUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2698979560</pqid></control><display><type>article</type><title>Antarctic Polar Vortex Dynamics Depending on Wind Speed Along the Vortex Edge</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zuev, Vladimir V. ; Savelieva, Ekaterina</creator><creatorcontrib>Zuev, Vladimir V. ; Savelieva, Ekaterina</creatorcontrib><description>The stratospheric polar vortices play a key role in springtime polar ozone depletion and can influence the stratospheric circulation. In this work, we use the method of vortex delineation based on geopotential values determined from the maximum temperature gradient and maximum wind speed, thus characterizing the edge of the Antarctic polar vortex. Using the vortex delineation method based on the ERA5 reanalysis data for 1979–2019, we characterized the dynamics of the Antarctic polar vortex in the lower stratosphere depending on the prevailing wind speed along the vortex edge. We filtered out cases of weakening of the dynamic barrier, which prevents the penetration of air masses into the polar vortex. We show that in the lower stratosphere the area of the Antarctic polar vortex usually exceeds 10 million km 2 , the mean wind speed along the vortex edge typically exceeds 30 m/s, and the mean temperature inside the vortex is in most cases less than −50 °C.</description><identifier>ISSN: 0033-4553</identifier><identifier>EISSN: 1420-9136</identifier><identifier>DOI: 10.1007/s00024-022-03054-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Air masses ; Antarctic vortex ; Delineation ; Dynamic height ; Dynamics ; Earth and Environmental Science ; Earth Sciences ; Geophysics/Geodesy ; Geopotential ; Lower stratosphere ; Maximum temperatures ; Maximum winds ; Mean temperatures ; Mean winds ; Ozone ; Ozone depletion ; Polar vortex ; Stratosphere ; Stratospheric circulation ; Stratospheric polar vortexes ; Stratospheric vortices ; Temperature ; Temperature gradients ; Vortex dynamics ; Vortices ; Wind ; Wind speed ; Winter</subject><ispartof>Pure and applied geophysics, 2022-07, Vol.179 (6-7), p.2609-2616</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-216f35a27648200b293166d6d3c2bfc4429c172694695435c1f3fa6e8598cf013</citedby><cites>FETCH-LOGICAL-c249t-216f35a27648200b293166d6d3c2bfc4429c172694695435c1f3fa6e8598cf013</cites><orcidid>0000-0002-6560-7386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00024-022-03054-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00024-022-03054-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Zuev, Vladimir V.</creatorcontrib><creatorcontrib>Savelieva, Ekaterina</creatorcontrib><title>Antarctic Polar Vortex Dynamics Depending on Wind Speed Along the Vortex Edge</title><title>Pure and applied geophysics</title><addtitle>Pure Appl. Geophys</addtitle><description>The stratospheric polar vortices play a key role in springtime polar ozone depletion and can influence the stratospheric circulation. In this work, we use the method of vortex delineation based on geopotential values determined from the maximum temperature gradient and maximum wind speed, thus characterizing the edge of the Antarctic polar vortex. Using the vortex delineation method based on the ERA5 reanalysis data for 1979–2019, we characterized the dynamics of the Antarctic polar vortex in the lower stratosphere depending on the prevailing wind speed along the vortex edge. We filtered out cases of weakening of the dynamic barrier, which prevents the penetration of air masses into the polar vortex. We show that in the lower stratosphere the area of the Antarctic polar vortex usually exceeds 10 million km 2 , the mean wind speed along the vortex edge typically exceeds 30 m/s, and the mean temperature inside the vortex is in most cases less than −50 °C.</description><subject>Air masses</subject><subject>Antarctic vortex</subject><subject>Delineation</subject><subject>Dynamic height</subject><subject>Dynamics</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics/Geodesy</subject><subject>Geopotential</subject><subject>Lower stratosphere</subject><subject>Maximum temperatures</subject><subject>Maximum winds</subject><subject>Mean temperatures</subject><subject>Mean winds</subject><subject>Ozone</subject><subject>Ozone depletion</subject><subject>Polar vortex</subject><subject>Stratosphere</subject><subject>Stratospheric circulation</subject><subject>Stratospheric polar vortexes</subject><subject>Stratospheric vortices</subject><subject>Temperature</subject><subject>Temperature gradients</subject><subject>Vortex dynamics</subject><subject>Vortices</subject><subject>Wind</subject><subject>Wind speed</subject><subject>Winter</subject><issn>0033-4553</issn><issn>1420-9136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTmOZNlaX1BRcHXMqSZTJ3SJmMyBfvvHR3FnasLh_OdCx9CpxTOKUBxkQGACQKMEeAgBRF7aEQFA6IpV_toBMA5EVLyQ3SU8wqAFoXUI3Q3CZ1Nrmscfohrm_BLTJ3_wLNdsJvGZTzzrQ9VE5Y4BvzahAo_tt5XeLKOfda9-V_islr6Y3RQ23X2Jz93jJ6vLp-mN2R-f307ncyJY0J3hFFVc2lZoUTJABZMc6pUpSru2KJ2QjDtaMGUFkpLwaWjNa-t8qXUpauB8jE6G3bbFN-3PndmFbcp9C9NT5W60FJB32JDy6WYc_K1aVOzsWlnKJgvbWbQZnpt5lubET3EByj35bD06W_6H-oTS_ttUA</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Zuev, Vladimir V.</creator><creator>Savelieva, Ekaterina</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6560-7386</orcidid></search><sort><creationdate>20220701</creationdate><title>Antarctic Polar Vortex Dynamics Depending on Wind Speed Along the Vortex Edge</title><author>Zuev, Vladimir V. ; Savelieva, Ekaterina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-216f35a27648200b293166d6d3c2bfc4429c172694695435c1f3fa6e8598cf013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air masses</topic><topic>Antarctic vortex</topic><topic>Delineation</topic><topic>Dynamic height</topic><topic>Dynamics</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics/Geodesy</topic><topic>Geopotential</topic><topic>Lower stratosphere</topic><topic>Maximum temperatures</topic><topic>Maximum winds</topic><topic>Mean temperatures</topic><topic>Mean winds</topic><topic>Ozone</topic><topic>Ozone depletion</topic><topic>Polar vortex</topic><topic>Stratosphere</topic><topic>Stratospheric circulation</topic><topic>Stratospheric polar vortexes</topic><topic>Stratospheric vortices</topic><topic>Temperature</topic><topic>Temperature gradients</topic><topic>Vortex dynamics</topic><topic>Vortices</topic><topic>Wind</topic><topic>Wind speed</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuev, Vladimir V.</creatorcontrib><creatorcontrib>Savelieva, Ekaterina</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Pure and applied geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuev, Vladimir V.</au><au>Savelieva, Ekaterina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antarctic Polar Vortex Dynamics Depending on Wind Speed Along the Vortex Edge</atitle><jtitle>Pure and applied geophysics</jtitle><stitle>Pure Appl. Geophys</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>179</volume><issue>6-7</issue><spage>2609</spage><epage>2616</epage><pages>2609-2616</pages><issn>0033-4553</issn><eissn>1420-9136</eissn><abstract>The stratospheric polar vortices play a key role in springtime polar ozone depletion and can influence the stratospheric circulation. In this work, we use the method of vortex delineation based on geopotential values determined from the maximum temperature gradient and maximum wind speed, thus characterizing the edge of the Antarctic polar vortex. Using the vortex delineation method based on the ERA5 reanalysis data for 1979–2019, we characterized the dynamics of the Antarctic polar vortex in the lower stratosphere depending on the prevailing wind speed along the vortex edge. We filtered out cases of weakening of the dynamic barrier, which prevents the penetration of air masses into the polar vortex. We show that in the lower stratosphere the area of the Antarctic polar vortex usually exceeds 10 million km 2 , the mean wind speed along the vortex edge typically exceeds 30 m/s, and the mean temperature inside the vortex is in most cases less than −50 °C.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00024-022-03054-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6560-7386</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0033-4553
ispartof Pure and applied geophysics, 2022-07, Vol.179 (6-7), p.2609-2616
issn 0033-4553
1420-9136
language eng
recordid cdi_proquest_journals_2698979560
source SpringerLink Journals - AutoHoldings
subjects Air masses
Antarctic vortex
Delineation
Dynamic height
Dynamics
Earth and Environmental Science
Earth Sciences
Geophysics/Geodesy
Geopotential
Lower stratosphere
Maximum temperatures
Maximum winds
Mean temperatures
Mean winds
Ozone
Ozone depletion
Polar vortex
Stratosphere
Stratospheric circulation
Stratospheric polar vortexes
Stratospheric vortices
Temperature
Temperature gradients
Vortex dynamics
Vortices
Wind
Wind speed
Winter
title Antarctic Polar Vortex Dynamics Depending on Wind Speed Along the Vortex Edge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A19%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antarctic%20Polar%20Vortex%20Dynamics%20Depending%20on%20Wind%20Speed%20Along%20the%20Vortex%20Edge&rft.jtitle=Pure%20and%20applied%20geophysics&rft.au=Zuev,%20Vladimir%20V.&rft.date=2022-07-01&rft.volume=179&rft.issue=6-7&rft.spage=2609&rft.epage=2616&rft.pages=2609-2616&rft.issn=0033-4553&rft.eissn=1420-9136&rft_id=info:doi/10.1007/s00024-022-03054-4&rft_dat=%3Cproquest_cross%3E2698979560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2698979560&rft_id=info:pmid/&rfr_iscdi=true