Credibility Verification of Social Media Users for Detecting Fake News

Fake news contains wrong information’s and mostly it spreads through social media. This is mostly done to impose some ideas and is implemented with reasons. These news containing false claims, may end up with viralized. The role of coordinated users in social media is high as they try to give fake r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Webology 2021, Vol.18 (Special Issue 03), p.274-281
Hauptverfasser: Sivasankari, S., Vadivu, Dr.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 281
container_issue Special Issue 03
container_start_page 274
container_title Webology
container_volume 18
creator Sivasankari, S.
Vadivu, Dr.G.
description Fake news contains wrong information’s and mostly it spreads through social media. This is mostly done to impose some ideas and is implemented with reasons. These news containing false claims, may end up with viralized. The role of coordinated users in social media is high as they try to give fake reviews to promote or remove some YouTube videos. These coordinated users also can promote unworthy products for sale. With respect to politics, they can even change the scenario by giving negative votes. This paper implemented to verify the user credibility in social media based on their similarity measures. If the user is incredible then the content posted by them is also assumed to be incredible. It is time consuming and includes lot of difficulty in verifying fake content in social media. So we have tried to segregate incredible users that indirectly helps us to identify fake content posted by them.
doi_str_mv 10.14704/WEB/V18SI03/WEB18040
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2697724348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2697724348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2430-43ff9b30bf581bf77e7b05fbe3c9c581b4b3ff5e1e51d0a38f65551d51a30a273</originalsourceid><addsrcrecordid>eNpNkFFLgjEUhkcUZNZPCAZdf3n2bXPzskxLsLowrbuxzS1m5mz7JPz3zTTo6rwcHt4XHoQuCVwTJoB1Xge3nRmRkxHQXSYSGByhFhGUV0TKt-N_-RSd5bwAYKwGaKFhP7l5MGEZmi2euRR8sLoJcYWjx5Nog17ix0JoPM0uZexjwneucbYJq3c81B8OP7nvfI5OvF5md3G4bTQdDl76D9X4-X7UvxlXtmYUKka97xkKxnNJjBfCCQPcG0dtz-5ezBSCO-I4mYOm0nc5L5ETTUHXgrbR1b53neLXxuVGLeImrcqkqrs9IcoKk4Xie8qmmHNyXq1T-NRpqwioX2WqaFIHZepPGf0B6vdfTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697724348</pqid></control><display><type>article</type><title>Credibility Verification of Social Media Users for Detecting Fake News</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sivasankari, S. ; Vadivu, Dr.G.</creator><creatorcontrib>Sivasankari, S. ; Vadivu, Dr.G.</creatorcontrib><description>Fake news contains wrong information’s and mostly it spreads through social media. This is mostly done to impose some ideas and is implemented with reasons. These news containing false claims, may end up with viralized. The role of coordinated users in social media is high as they try to give fake reviews to promote or remove some YouTube videos. These coordinated users also can promote unworthy products for sale. With respect to politics, they can even change the scenario by giving negative votes. This paper implemented to verify the user credibility in social media based on their similarity measures. If the user is incredible then the content posted by them is also assumed to be incredible. It is time consuming and includes lot of difficulty in verifying fake content in social media. So we have tried to segregate incredible users that indirectly helps us to identify fake content posted by them.</description><identifier>ISSN: 1735-188X</identifier><identifier>EISSN: 1735-188X</identifier><identifier>DOI: 10.14704/WEB/V18SI03/WEB18040</identifier><language>eng</language><publisher>Tehran: Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science</publisher><subject>Bullying ; Celebrities ; Classification ; Credibility ; Datasets ; False information ; Neural networks ; Social networks ; User behavior</subject><ispartof>Webology, 2021, Vol.18 (Special Issue 03), p.274-281</ispartof><rights>Copyright Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science Jan 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2430-43ff9b30bf581bf77e7b05fbe3c9c581b4b3ff5e1e51d0a38f65551d51a30a273</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Sivasankari, S.</creatorcontrib><creatorcontrib>Vadivu, Dr.G.</creatorcontrib><title>Credibility Verification of Social Media Users for Detecting Fake News</title><title>Webology</title><description>Fake news contains wrong information’s and mostly it spreads through social media. This is mostly done to impose some ideas and is implemented with reasons. These news containing false claims, may end up with viralized. The role of coordinated users in social media is high as they try to give fake reviews to promote or remove some YouTube videos. These coordinated users also can promote unworthy products for sale. With respect to politics, they can even change the scenario by giving negative votes. This paper implemented to verify the user credibility in social media based on their similarity measures. If the user is incredible then the content posted by them is also assumed to be incredible. It is time consuming and includes lot of difficulty in verifying fake content in social media. So we have tried to segregate incredible users that indirectly helps us to identify fake content posted by them.</description><subject>Bullying</subject><subject>Celebrities</subject><subject>Classification</subject><subject>Credibility</subject><subject>Datasets</subject><subject>False information</subject><subject>Neural networks</subject><subject>Social networks</subject><subject>User behavior</subject><issn>1735-188X</issn><issn>1735-188X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkFFLgjEUhkcUZNZPCAZdf3n2bXPzskxLsLowrbuxzS1m5mz7JPz3zTTo6rwcHt4XHoQuCVwTJoB1Xge3nRmRkxHQXSYSGByhFhGUV0TKt-N_-RSd5bwAYKwGaKFhP7l5MGEZmi2euRR8sLoJcYWjx5Nog17ix0JoPM0uZexjwneucbYJq3c81B8OP7nvfI5OvF5md3G4bTQdDl76D9X4-X7UvxlXtmYUKka97xkKxnNJjBfCCQPcG0dtz-5ezBSCO-I4mYOm0nc5L5ETTUHXgrbR1b53neLXxuVGLeImrcqkqrs9IcoKk4Xie8qmmHNyXq1T-NRpqwioX2WqaFIHZepPGf0B6vdfTw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Sivasankari, S.</creator><creator>Vadivu, Dr.G.</creator><general>Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>M1O</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2021</creationdate><title>Credibility Verification of Social Media Users for Detecting Fake News</title><author>Sivasankari, S. ; Vadivu, Dr.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2430-43ff9b30bf581bf77e7b05fbe3c9c581b4b3ff5e1e51d0a38f65551d51a30a273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bullying</topic><topic>Celebrities</topic><topic>Classification</topic><topic>Credibility</topic><topic>Datasets</topic><topic>False information</topic><topic>Neural networks</topic><topic>Social networks</topic><topic>User behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sivasankari, S.</creatorcontrib><creatorcontrib>Vadivu, Dr.G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>Library Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Webology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sivasankari, S.</au><au>Vadivu, Dr.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Credibility Verification of Social Media Users for Detecting Fake News</atitle><jtitle>Webology</jtitle><date>2021</date><risdate>2021</risdate><volume>18</volume><issue>Special Issue 03</issue><spage>274</spage><epage>281</epage><pages>274-281</pages><issn>1735-188X</issn><eissn>1735-188X</eissn><abstract>Fake news contains wrong information’s and mostly it spreads through social media. This is mostly done to impose some ideas and is implemented with reasons. These news containing false claims, may end up with viralized. The role of coordinated users in social media is high as they try to give fake reviews to promote or remove some YouTube videos. These coordinated users also can promote unworthy products for sale. With respect to politics, they can even change the scenario by giving negative votes. This paper implemented to verify the user credibility in social media based on their similarity measures. If the user is incredible then the content posted by them is also assumed to be incredible. It is time consuming and includes lot of difficulty in verifying fake content in social media. So we have tried to segregate incredible users that indirectly helps us to identify fake content posted by them.</abstract><cop>Tehran</cop><pub>Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science</pub><doi>10.14704/WEB/V18SI03/WEB18040</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1735-188X
ispartof Webology, 2021, Vol.18 (Special Issue 03), p.274-281
issn 1735-188X
1735-188X
language eng
recordid cdi_proquest_journals_2697724348
source EZB-FREE-00999 freely available EZB journals
subjects Bullying
Celebrities
Classification
Credibility
Datasets
False information
Neural networks
Social networks
User behavior
title Credibility Verification of Social Media Users for Detecting Fake News
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A13%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Credibility%20Verification%20of%20Social%20Media%20Users%20for%20Detecting%20Fake%20News&rft.jtitle=Webology&rft.au=Sivasankari,%20S.&rft.date=2021&rft.volume=18&rft.issue=Special%20Issue%2003&rft.spage=274&rft.epage=281&rft.pages=274-281&rft.issn=1735-188X&rft.eissn=1735-188X&rft_id=info:doi/10.14704/WEB/V18SI03/WEB18040&rft_dat=%3Cproquest_cross%3E2697724348%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697724348&rft_id=info:pmid/&rfr_iscdi=true